当前位置:   article > 正文

python:LBP图像特征提取与SVM分类_python图像特征提取进行分类

python图像特征提取进行分类
  1. import os
  2. import cv2
  3. import xlwt
  4. import xlrd
  5. import numpy as np
  6. from skimage import feature as skif
  7. from sklearn.model_selection import train_test_split
  8. from sklearn.svm import SVC
  9. from sklearn.metrics import accuracy_score
  10. def getLbpData(image, hist_size=256, lbp_radius=1, lbp_point=8):
  11. image = cv2.resize(image, (150, 150), interpolation=cv2.INTER_CUBIC)
  12. # 使用LBP方法提取图像的纹理特征.
  13. lbp = skif.local_binary_pattern(image, lbp_point, lbp_radius, 'default')
  14. # 统计图像的直方图
  15. max_bins = int(lbp.max() + 1)
  16. # hist size:256
  17. hist, _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins))
  18. return hist
  19. data = []
  20. label = []
  21. IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base11')
  22. book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base11.xls'))
  23. table = book.sheet_by_index(0)
  24. for name in table.col_values(0):
  25. print(name)
  26. image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
  27. # print(image)
  28. lbpdata = getLbpData(image)
  29. data.append(lbpdata)
  30. for lab in table.col_values(2):
  31. label.append(lab)
  32. IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base12')
  33. book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base12.xls'))
  34. table = book.sheet_by_index(0)
  35. for name in table.col_values(0):
  36. print(name)
  37. image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
  38. # print(image)
  39. lbpdata = getLbpData(image)
  40. data.append(lbpdata)
  41. for lab in table.col_values(2):
  42. label.append(lab)
  43. IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base13')
  44. book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base13.xls'))
  45. table = book.sheet_by_index(0)
  46. for name in table.col_values(0):
  47. print(name)
  48. image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
  49. # print(image)
  50. lbpdata = getLbpData(image)
  51. data.append(lbpdata)
  52. for lab in table.col_values(2):
  53. label.append(lab)
  54. IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base14')
  55. book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base14.xls'))
  56. table = book.sheet_by_index(0)
  57. for name in table.col_values(0):
  58. print(name)
  59. image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
  60. # print(image)
  61. lbpdata = getLbpData(image)
  62. data.append(lbpdata)
  63. for lab in table.col_values(2):
  64. label.append(lab)
  65. data = np.array(data)
  66. print(data.shape)
  67. label = np.array(label)
  68. print(label.shape)
  69. train_X,test_X,train_y,test_y = train_test_split(data,label,test_size=0.3,random_state=5)
  70. model = SVC(kernel='rbf',C=1)
  71. model.fit(train_X,train_y)
  72. y_hat = model.predict(test_X)
  73. ACC = accuracy_score(y_hat, test_y)
  74. print("ACC===",ACC)

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/373362
推荐阅读
相关标签
  

闽ICP备14008679号