赞
踩
- import os
- import cv2
- import xlwt
- import xlrd
- import numpy as np
- from skimage import feature as skif
- from sklearn.model_selection import train_test_split
- from sklearn.svm import SVC
- from sklearn.metrics import accuracy_score
-
-
-
- def getLbpData(image, hist_size=256, lbp_radius=1, lbp_point=8):
- image = cv2.resize(image, (150, 150), interpolation=cv2.INTER_CUBIC)
- # 使用LBP方法提取图像的纹理特征.
- lbp = skif.local_binary_pattern(image, lbp_point, lbp_radius, 'default')
- # 统计图像的直方图
- max_bins = int(lbp.max() + 1)
- # hist size:256
- hist, _ = np.histogram(lbp, normed=True, bins=max_bins, range=(0, max_bins))
- return hist
-
-
-
- data = []
- label = []
-
- IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base11')
- book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base11.xls'))
- table = book.sheet_by_index(0)
- for name in table.col_values(0):
- print(name)
- image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
- # print(image)
- lbpdata = getLbpData(image)
- data.append(lbpdata)
- for lab in table.col_values(2):
- label.append(lab)
-
-
-
- IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base12')
- book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base12.xls'))
- table = book.sheet_by_index(0)
- for name in table.col_values(0):
- print(name)
- image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
- # print(image)
- lbpdata = getLbpData(image)
- data.append(lbpdata)
- for lab in table.col_values(2):
- label.append(lab)
-
- IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base13')
- book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base13.xls'))
- table = book.sheet_by_index(0)
- for name in table.col_values(0):
- print(name)
- image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
- # print(image)
- lbpdata = getLbpData(image)
- data.append(lbpdata)
- for lab in table.col_values(2):
- label.append(lab)
-
-
- IMAGES_DIR = os.path.join(os.path.dirname(__file__), r'D:\eye_data\Base14')
- book = xlrd.open_workbook(os.path.join(IMAGES_DIR, 'Annotation_Base14.xls'))
- table = book.sheet_by_index(0)
- for name in table.col_values(0):
- print(name)
- image = cv2.imread(os.path.join(IMAGES_DIR, name),0)
- # print(image)
- lbpdata = getLbpData(image)
- data.append(lbpdata)
- for lab in table.col_values(2):
- label.append(lab)
-
-
- data = np.array(data)
- print(data.shape)
- label = np.array(label)
- print(label.shape)
-
- train_X,test_X,train_y,test_y = train_test_split(data,label,test_size=0.3,random_state=5)
-
- model = SVC(kernel='rbf',C=1)
- model.fit(train_X,train_y)
- y_hat = model.predict(test_X)
- ACC = accuracy_score(y_hat, test_y)
- print("ACC===",ACC)

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。