当前位置:   article > 正文

双重差分法|DID|PSM|平行趋势检验|安慰剂检验|Stata代码_psmdid代码

psmdid代码

双重差分与稳健性检验原理

双重差分法

基本模型

y i t = α + γ D t + β x i t + u i + ϵ i t ( 1 ) y_{it}=\alpha + \gamma D_t + \beta x_{it} + u_i + \epsilon_{it} (1) yit=α+γDt+βxit+ui+ϵit1
D t = { 1 , i f t = 2 0 , i f t = 0 D_t=\left\{

1,ift=20,ift=0
\right. Dt={ 1,0,ifift=2t=0

x i t = { 1 , i f i ∈ T r e a t a n d t = 2 0 , i f e l s e x_{it}=\left\{

1,ifiTreatandt=20,ifelse
\right. xit={ 1,0,ififiTreatelseandt=2

  • t = 1时

  • 控制组
    y c o n t r o l , t = 1 = α + γ D t = 1 + β x c o n t r o l , t = 1 + u c o n t r o l + ϵ c o n t r o l , t = 1 = α + u c o n t r o l + ϵ c o n t r o l , t = 1 y_{control,t=1}=\alpha + \gamma D_{t=1} + \beta x_{control,t=1} + u_{control} + \epsilon_{control,t=1} \\ = \alpha + u_{control} + \epsilon_{control,t=1} ycontrol,t=1=α+γDt=1+βxcontrol,t=1+ucontrol+ϵcontrol,t=1=α+ucontrol+ϵcontrol,t=1

  • 处理组
    y t r e a t , t = 1 = α + γ D t = 1 + β x t r e a t , t = 1 + u t r e a t + ϵ t r e a t , t = 1 = α + u t r e a t + ϵ t r e a t , t = 1 y_{treat,t=1}=\alpha + \gamma D_{t=1} + \beta x_{treat,t=1} + u_{treat} + \epsilon_{treat,t=1}\\ = \alpha + u_{treat} + \epsilon_{treat,t=1} ytreat,t=1=α+γDt=1+βxtreat,t=1+utreat+ϵtreat,t=1=α+utreat+ϵtreat,t=1

  • t = 2时

  • 控制组

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/368417
推荐阅读
相关标签
  

闽ICP备14008679号