当前位置:   article > 正文

Yolov8有效涨点:YOLOv8-AM,添加多种注意力模块提高检测精度,含代码,超详细_yolov8提高精度

yolov8提高精度
前言

2023 年,Ultralytics 推出了最新版本的 YOLO 模型。注意力机制是提高模型性能最热门的方法之一。

本次介绍的是YOLOv8-AM,它将注意力机制融入到原始的YOLOv8架构中。具体来说,我们分别采用四个注意力模块:卷积块注意力模块(CBAM)、全局注意力机制(GAM)、高效通道注意力(ECA)和随机注意力(SA)来设计改进模型并在数据集上进行测试。实验结果表明,基于ResBlock + CBAM(ResCBAM)的YOLOv8-AM模型在IoU 50(mAP 50)下的平均精度提到了2.2%,达到了state-of-the-art(SOTA)表现。相反,结合GAM的YOLOv8-AM模型获得了的mAP @50并不是一个令人满意的增强。因此,我们将ResBlock和GAM结合起来,引入ResGAM设计另一个新的YOLOv8-AM模型,获得一个较为满意的结果。

目录

前言

注意力机制:

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/我家自动化/article/detail/345861
推荐阅读
相关标签
  

闽ICP备14008679号