赞
踩
许多年前,一个刚结婚的名叫 Shay Banon 的失业开发者,跟着他的妻子去了伦敦,他的妻子在那里学习厨师。在寻找一个赚钱的工作的时候,为了给他的妻子做一个食谱搜索引擎,他开始使用 Lucene 的一个早期版本。直接使用 Lucene 是很难的,因此 Shay 开始做一个抽象层,Java 开发者使用它可以很简单的给他们的程序添加搜索功能。他发布了他的第一个开源项目 Compass。后来 Shay 获得了一份工作,主要是高性能,分布式环境下的内存数据网格。这个对于高性能,实时,分布式搜索引擎的需求尤为突出, 他决定重写 Compass,把它变为一个独立的服务并取名 Elasticsearch。
第一个公开版本在2010年2月发布,从此以后,Elasticsearch 已经成为了 Github 上最活跃的项目之一,他拥有超过300名 contributors(目前736名 contributors )。一家公司已经开始围绕 Elasticsearch 提供商业服务,并开发新的特性,但是,Elasticsearch 将永远开源并对所有人可用。
据说,Shay 的妻子还在等着她的食谱搜索引擎…
简单地说, Elaaticsearch 是一个分布式的使用 REST 接口的搜索引擎。Elasticsearch是一个基于 Apache Lucene (TM)的开源搜索引擎。无论在开源还是专有领域,Lucene 可以被认为是迄今为止最先进、性能最好的、功能最全的搜索引擎库。在 1999 年,Doug Cutting 创建了一个叫做 Lucene 的开源项目:
一个完全用 Java 编写的搜索引擎库
截止2005年,是一个顶级的 Apache 开源项目
提供强大的全文搜索功能
Lucene 只是一个库。Lucene 本身并不提供高可用性及分布式部署。想要发挥其强大的作用,你需使用 Java 并要将其集成到你的应用中。Lucene 非常复杂,你需要深入的了解检索相关知识来理解它是如何工作的。
在 2004 年, Shay Banon,也就是现在 Elastic 的 CEO,开发了一个叫做 Compass 的开源项目:
构建于 Lucence 之上
目的是使得 Lucene 搜索更容易集成到 Java 应用中去
可扩展性变得尤为重要
在 2010 年,Shay 完全重新编写了 Compass 以实现如下的两个目的:
从一开始设计之初,分布式部署贯穿整个设计
可方便地使用其它的语言进行对接使用
Shay 最终把这个项目称之为 Elasticsearch,并于当年10月发布与 github 上。
Elasticsearch 也是使用 Java 编写并使用 Lucene 来建立索引并实现搜索功能,但是它的目的是通过简单连贯的 RESTful API 让全文搜索变得简单并隐藏 Lucene 的复杂性。
不过,Elasticsearch 不仅仅是 Lucene 和全文搜索引擎,它还提供:
分布式的实时文件存储,每个字段都被索引并可被搜索
实时分析的分布式搜索引擎
可以扩展到上百台服务器,处理 PB 级结构化或非结构化数据
什么是倒排索引?倒排索引也叫反向索引,我们通常理解的索引是通过key寻找value,与之相反,倒排索引是通过value寻找key,故而被称作反向索引。
下面我们用一个简单的例子描述一下倒排索引的作用过程:
假如现在有三份数据文档,内容分别是:
Doc 1:Java is the best programming language
Doc 2:PHP is the best programming language
Doc 3:Javascript is the best programming language
为了创建索引,ES引擎通过分词器将每个文档的内容拆成单独的词(称之为词条,或term),再将这些词条创建成不含重复词条的排序列表,然后列出每个词条出现在哪个文档,结果如下:
这种结构由文档中所有不重复的词的列表构成,对于其中每个词都有至少一个文档与与之关联。这种由属性值来确定记录的位置的结构就是倒排索引,带有倒排索引的文件被称为倒排文件。
其中,几个核心术语需要着重理解:
要了解 Elasticsearch ,首先要先了解下面的几个专有名词:索引(Index)、类型(Type)、文档(Document)、映射(mapping)。
既然 Elasticsearch 能够存储和查询数据,那么我们自然要将其和最具知名度的数据库-Mysql进行一番对比,两者之间可以通过下表做一个并不非常严谨的类比,主要是为了方便理解。
Index:索引,相当于关系数据库中的database概念,是一类数据的集合,是一个逻辑概念。
Type:类型,相当于数据库中的table概念,在6.0版本之前,一个Index中可以有多个type,7.0版本后彻底废弃多type,每个索引只能有一个type,即“ _doc”。这个概念就不用太关注了。
Document:文档,存储在ES中的主要实体叫文档,可以理解为关系型数据库中表的一行数据记录。每个文档由多个字段(field)组成。区别于关系型数据库的是,ES是一个非结构化的数据库,每个文档可以有不同的字段,并且有一个唯一标识。
Field:字段,存在于文档中,字段是包含数据的键值对,可以理解为Mysql一行数据的其中一列。
Mapping:映射,是对索引库中的索引字段及其数据类型进行定义,类似于关系型数据库中的表结构。ES默认动态创建索引和索引类型的Mapping。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。