赞
踩
目录
基于YOLOv5的火焰与烟雾检测系统演示与介绍
数据集准备了6744张已经标注好的数据集
runs文件夹中,存放训练和评估的结果图
请按照给定的python版本配置环境,否则可能会因依赖不兼容而出错,
在文件目录下cmd进入终端
(1)使用anaconda新建python3.10环境:
conda create -n env_rec python=3.10
(2)激活创建的环境:
conda activate env_rec
(3)使用pip安装所需的依赖,可通过requirements.txt:
pip install -r requirements.txt
在settings中找到project python interpreter 点击Add Interpreter
点击conda,在Use existing environment中选择刚才创建的虚拟环境 ,最后点击确定。如果conda Executable中路径没有,那就把anaconda3的路径添加上
随着人工智能和深度学习技术的快速发展,各行各业都在寻找将其应用于实际问题的新方法。其中,物体检测是一个热门的研究领域,而火灾和烟雾的实时检测尤为关键。在这篇博客中,我们将重点介绍 YoloV5 算法在火焰与烟雾检测中的应用及其技术细节。
YoloV5 是一种基于深度学习的实时目标检测模型,由Ultralytics开发并于2020年发布。它建立在PyTorch框架上,通过一系列卷积神经网络层来检测图像中的多个物体。与早期的 Yolo 系列相比,YoloV5 在准确性和速度之间找到了良好的平衡,使其在实时应用中具有广泛的适用性。
火灾和烟雾检测是安全监控中至关重要的任务,然而传统的方法往往依赖于规则和手工设计的特征,无法适应复杂多变的场景。深度学习模型,特别是像 YoloV5 这样的物体检测器,通过学习大量的图像数据和特征表示,能够更准确地识别火焰和烟雾,从而提高检测的精度和可靠性。
YoloV5 模型的核心是一个卷积神经网络,由一系列卷积层、池化层和全连接层组成。它能够以端到端的方式从原始图像中直接预测出目标的位置和类别。对于火焰和烟雾检测,YoloV5 需要训练数据集,其中包含了大量不同场景下的火灾和烟雾图像,以及相应的标签。
为了验证 YoloV5 在火焰与烟雾检测中的效果,我们使用了公开的数据集进行实验。在训练过程中,我们调整模型的超参数和数据增强策略,以提升检测的精度和鲁棒性。最终,我们评估了模型在测试集上的表现,并与其他经典方法进行了比较。实验结果显示,YoloV5 在火灾和烟雾检测中表现出色,具有较高的检测精度和较快的处理速度。
尽管 YoloV5 在火灾与烟雾检测中取得了显著进展,但仍面临一些挑战。例如,不同场景下的光照条件、视角变化和目标尺度变化等问题仍然需要进一步研究和改进。此外,模型的实时性和稳定性对于安全监控系统的应用至关重要,需要在硬件支持和算法优化上持续努力。
综上所述,YoloV5 火焰与烟雾检测代表了深度学习在安全监控领域的重要应用。随着技术的进一步成熟和数据集的丰富,我们相信这些方法将在未来带来更多创新和改进,为社会安全和应急响应提供更多有力的支持。
通过本文的介绍,希望读者能对 YoloV5 在火灾与烟雾检测中的技术细节有所了解,并对其在实际应用中的潜力有所认识。未来,我们期待看到更多基于深度学习的物体检测技术在各个领域发挥重要作用,为人们的生活和安全保驾护航。
# -*- coding: UTF-8 -*- """ @Author: mz @Date : 2022/3/6 20:43 @version V1.0 """ import os import random import sys import threading import time import cv2 import numpy import torch import torch.backends.cudnn as cudnn from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from models.experimental import attempt_load from utils.datasets import LoadImages, LoadStreams from utils.general import check_img_size, non_max_suppression, scale_coords from utils.plots import plot_one_box from utils.torch_utils import select_device, time_synchronized model_path = 'weights/best.pt' # 添加一个关于界面 # 窗口主类 class MainWindow(QTabWidget): # 基本配置不动,然后只动第三个界面 def __init__(self): # 初始化界面 super().__init__() self.setWindowTitle('Yolov5火灾烟雾检测预警系统') self.resize(1200, 800) self.setWindowIcon(QIcon("./UI/xf.jpg")) # 图片读取进程 self.output_size = 480 self.img2predict = "" # 空字符串会自己进行选择,首选cuda self.device = '' # # 初始化视频读取线程 self.vid_source = '0' # 初始设置为摄像头 # 检测视频的线程 self.threading = None # 是否跳出当前循环的线程 self.jump_threading: bool = False self.image_size = 640 self.confidence = 0.25 self.iou_threshold = 0.45 # 指明模型加载的位置的设备 self.model = self.model_load(weights=model_path, device=self.device) self.initUI() self.reset_vid() @torch.no_grad() def model_load(self, weights="", # model.pt path(s) device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu ): """ 模型初始化 """ device = self.device = select_device(device) # half = device.type != 'cpu' # half precision only supported on CUDA half = device.type != 0 # Load model model = attempt_load(weights, map_location=device) # load FP32 model self.stride = int(model.stride.max()) # model stride self.image_size = check_img_size(self.image_size, s=self.stride) # check img_size if half: model.half() # to FP16 # Run inference if device.type != 'cpu': print("Run inference") model(torch.zeros(1, 3, self.image_size, self.image_size).to(device).type_as( next(model.parameters()))) # run once print("模型加载完成!") return model def reset_vid(self): """ 界面重置事件 """ self.webcam_detection_btn.setEnabled(True) self.mp4_detection_btn.setEnabled(True) self.left_vid_img.setPixmap(QPixmap("./UI/up.jpeg")) self.vid_source = '0' self.disable_btn(self.det_img_button) self.disable_btn(self.vid_start_stop_btn) self.jump_threading = False def initUI(self): """ 界面初始化 """ # 图片检测子界面 font_title = QFont('楷体', 16) font_main = QFont('楷体', 14) font_general = QFont('楷体', 10) # 图片识别界面, 两个按钮,上传图片和显示结果 img_detection_widget = QWidget() img_detection_layout = QVBoxLayout() img_detection_title = QLabel("图片识别功能") img_detection_title.setFont(font_title) mid_img_widget = QWidget() mid_img_layout = QHBoxLayout() self.left_img = QLabel() self.right_img = QLabel() self.left_img.setPixmap(QPixmap("./UI/up.jpeg")) self.right_img.setPixmap(QPixmap("./UI/right.jpeg")) self.left_img.setAlignment(Qt.AlignCenter) self.right_img.setAlignment(Qt.AlignCenter) self.left_img.setMinimumSize(480, 480) self.left_img.setStyleSheet("QLabel{background-color: #f6f8fa;}") mid_img_layout.addWidget(self.left_img) self.right_img.setMinimumSize(480, 480) self.right_img.setStyleSheet("QLabel{background-color: #f6f8fa;}") mid_img_layout.addStretch(0) mid_img_layout.addWidget(self.right_img) mid_img_widget.setLayout(mid_img_layout) self.up_img_button = QPushButton("上传图片") self.det_img_button = QPushButton("开始检测") self.up_img_button.clicked.connect(self.upload_img) self.det_img_button.clicked.connect(self.detect_img) self.up_img_button.setFont(font_main) self.det_img_button.setFont(font_main) self.up_img_button.setStyleSheet("QPushButton{color:white}" "QPushButton:hover{background-color: rgb(2,110,180);}" "QPushButton{background-color:rgb(48,124,208)}" "QPushButton{border:2px}" "QPushButton{border-radius:5px}" "QPushButton{padding:5px 5px}" "QPushButton{margin:5px 5px}") self.det_img_button.setStyleSheet("QPushButton{color:white}" "QPushButton:hover{background-color: rgb(2,110,180);}" "QPushButton{background-color:rgb(48,124,208)}" "QPushButton{border:2px}" "QPushButton{border-radius:5px}" "QPushButton{padding:5px 5px}" "QPushButton{margin:5px 5px}") img_detection_layout.addWidget(img_detection_title, alignment=Qt.AlignCenter) img_detection_layout.addWidget(mid_img_widget, alignment=Qt.AlignCenter) img_detection_layout.addWidget(self.up_img_button) img_detection_layout.addWidget(self.det_img_button) img_detection_widget.setLayout(img_detection_layout) # 视频识别界面 # 视频识别界面的逻辑比较简单,基本就从上到下的逻辑 vid_detection_widget = QWidget() vid_detection_layout = QVBoxLayout() vid_title = QLabel("视频检测功能") vid_title.setFont(font_title) self.left_vid_img = QLabel() self.right_vid_img = QLabel() self.left_vid_img.setPixmap(QPixmap("./UI/up.jpeg")) self.right_vid_img.setPixmap(QPixmap("./UI/right.jpeg")) self.left_vid_img.setAlignment(Qt.AlignCenter) self.left_vid_img.setMinimumSize(480, 480) self.left_vid_img.setStyleSheet("QLabel{background-color: #f6f8fa;}") self.right_vid_img.setAlignment(Qt.AlignCenter) self.right_vid_img.setMinimumSize(480, 480) self.right_vid_img.setStyleSheet("QLabel{background-color: #f6f8fa;}") mid_img_widget = QWidget() mid_img_layout = QHBoxLayout() mid_img_layout.addWidget(self.left_vid_img) mid_img_layout.addStretch(0) mid_img_layout.addWidget(self.right_vid_img) mid_img_widget.setLayout(mid_img_layout) self.webcam_detection_btn = QPushButton("摄像头实时监测") self.mp4_detection_btn = QPushButton("视频文件检测") self.vid_start_stop_btn = QPushButton("启动/停止检测") self.webcam_detection_btn.setFont(font_main) self.mp4_detection_btn.setFont(font_main) self.vid_start_stop_btn.setFont(font_main) self.webcam_detection_btn.setStyleSheet("QPushButton{color:white}" "QPushButton:hover{background-color: rgb(2,110,180);}" "QPushButton{background-color:rgb(48,124,208)}" "QPushButton{border:2px}" "QPushButton{border-radius:5px}" "QPushButton{padding:5px 5px}" "QPushButton{margin:5px 5px}") self.mp4_detection_btn.setStyleSheet("QPushButton{color:white}" "QPushButton:hover{background-color: rgb(2,110,180);}" "QPushButton{background-color:rgb(48,124,208)}" "QPushButton{border:2px}" "QPushButton{border-radius:5px}" "QPushButton{padding:5px 5px}" "QPushButton{margin:5px 5px}") self.vid_start_stop_btn.setStyleSheet("QPushButton{color:white}" "QPushButton:hover{background-color: rgb(2,110,180);}" "QPushButton{background-color:rgb(48,124,208)}" "QPushButton{border:2px}" "QPushButton{border-radius:5px}" "QPushButton{padding:5px 5px}" "QPushButton{margin:5px 5px}") self.webcam_detection_btn.clicked.connect(self.open_cam) self.mp4_detection_btn.clicked.connect(self.open_mp4) self.vid_start_stop_btn.clicked.connect(self.start_or_stop) # 添加fps显示 fps_container = QWidget() fps_container.setStyleSheet("QWidget{background-color: #f6f8fa;}") fps_container_layout = QHBoxLayout() fps_container.setLayout(fps_container_layout) # 左容器 fps_left_container = QWidget() fps_left_container.setStyleSheet("QWidget{background-color: #f6f8fa;}") fps_left_container_layout = QHBoxLayout() fps_left_container.setLayout(fps_left_container_layout) # 右容器 fps_right_container = QWidget() fps_right_container.setStyleSheet("QWidget{background-color: #f6f8fa;}") fps_right_container_layout = QHBoxLayout() fps_right_container.setLayout(fps_right_container_layout) # 将左容器和右容器添加到fps_container_layout中 fps_container_layout.addWidget(fps_left_container) fps_container_layout.addStretch(0) fps_container_layout.addWidget(fps_right_container) # 左容器中添加fps显示 raw_fps_label = QLabel("原始帧率:") raw_fps_label.setFont(font_general) raw_fps_label.setAlignment(Qt.AlignLeft) raw_fps_label.setStyleSheet("QLabel{margin-left:80px}") self.raw_fps_value = QLabel("0") self.raw_fps_value.setFont(font_general) self.raw_fps_value.setAlignment(Qt.AlignLeft) fps_left_container_layout.addWidget(raw_fps_label) fps_left_container_layout.addWidget(self.raw_fps_value) # 右容器中添加fps显示 detect_fps_label = QLabel("检测帧率:") detect_fps_label.setFont(font_general) detect_fps_label.setAlignment(Qt.AlignRight) self.detect_fps_value = QLabel("0") self.detect_fps_value.setFont(font_general) self.detect_fps_value.setAlignment(Qt.AlignRight) self.detect_fps_value.setStyleSheet("QLabel{margin-right:96px}") fps_right_container_layout.addWidget(detect_fps_label) fps_right_container_layout.addWidget(self.detect_fps_value) # 添加组件到布局上 vid_detection_layout.addWidget(vid_title, alignment=Qt.AlignCenter) vid_detection_layout.addWidget(fps_container) vid_detection_layout.addWidget(mid_img_widget, alignment=Qt.AlignCenter) vid_detection_layout.addWidget(self.webcam_detection_btn) vid_detection_layout.addWidget(self.mp4_detection_btn) vid_detection_layout.addWidget(self.vid_start_stop_btn) vid_detection_widget.setLayout(vid_detection_layout) # 关于界面 about_widget = QWidget() about_layout = QVBoxLayout() about_title = QLabel('欢迎使用目标检测系统\n\n 可以进行知识交流\n\n wx:sybh0117') # 修改欢迎词语 about_title.setFont(QFont('楷体', 18)) about_title.setAlignment(Qt.AlignCenter) about_img = QLabel() about_img.setPixmap(QPixmap('./UI/qq.png')) about_img.setAlignment(Qt.AlignCenter) label_super = QLabel() # 更换作者信息 label_super.setText("<a href='https://blog.csdn.net/m0_68036862?type=blog'>或者你可以在这里找到我-->mz</a>") label_super.setFont(QFont('楷体', 16)) label_super.setOpenExternalLinks(True) # label_super.setOpenExternalLinks(True) label_super.setAlignment(Qt.AlignRight) about_layout.addWidget(about_title) about_layout.addStretch() about_layout.addWidget(about_img) about_layout.addStretch() about_layout.addWidget(label_super) about_widget.setLayout(about_layout) self.addTab(img_detection_widget, '图片检测') self.addTab(vid_detection_widget, '视频检测') self.addTab(about_widget, '联系我') self.setTabIcon(0, QIcon('./UI/lufei.png')) self.setTabIcon(1, QIcon('./UI/lufei.png')) def disable_btn(self, pushButton: QPushButton): pushButton.setDisabled(True) pushButton.setStyleSheet("QPushButton{background-color: rgb(2,110,180);}") def enable_btn(self, pushButton: QPushButton): pushButton.setEnabled(True) pushButton.setStyleSheet( "QPushButton{background-color: rgb(48,124,208);}" "QPushButton{color:white}" ) def detect(self, source: str, left_img: QLabel, right_img: QLabel): """ @param source: file/dir/URL/glob, 0 for webcam @param left_img: 将左侧QLabel对象传入,用于显示图片 @param right_img: 将右侧QLabel对象传入,用于显示图片 """ model = self.model img_size = [self.image_size, self.image_size] # inference size (pixels) conf_threshold = self.confidence # confidence threshold iou_threshold = self.iou_threshold # NMS IOU threshold device = self.device # cuda device, i.e. 0 or 0,1,2,3 or cpu classes = None # filter by class: --class 0, or --class 0 2 3 agnostic_nms = False # class-agnostic NMS augment = False # augmented inference half = device.type != 'cpu' # half precision only supported on CUDA if source == "": self.disable_btn(self.det_img_button) QMessageBox.warning(self, "请上传", "请先上传视频或图片再进行检测") else: source = str(source) webcam = source.isnumeric() # Set Dataloader if webcam: cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=img_size, stride=self.stride) else: dataset = LoadImages(source, img_size=img_size, stride=self.stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] # 用来记录处理的图片数量 count = 0 # 计算帧率开始时间 fps_start_time = time.time() for path, img, im0s, vid_cap in dataset: # 直接跳出for,结束线程 if self.jump_threading: # 清除状态 self.jump_threading = False break count += 1 img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=augment)[0] # Apply NMS pred = non_max_suppression(pred, conf_threshold, iou_threshold, classes=classes, agnostic=agnostic_nms) t2 = time_synchronized() # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 s, im0 = 'detect : ', im0s[i].copy() else: s, im0 = 'detect : ', im0s.copy() # s += '%gx%g ' % img.shape[2:] # print string if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): label = f'{names[int(cls)]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) if names[int(cls)]=="fire" or names[int(cls)]=="smoke": im0 = cv2.putText(im0, "Warning", (50, 110), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) if webcam or vid_cap is not None: if webcam: # batch_size >= 1 img = im0s[i] else: img = im0s img = self.resize_img(img) img = QImage(img.data, img.shape[1], img.shape[0], img.shape[2] * img.shape[1], QImage.Format_RGB888) left_img.setPixmap(QPixmap.fromImage(img)) # 计算一次帧率 if count % 10 == 0: fps = int(10 / (time.time() - fps_start_time)) self.detect_fps_value.setText(str(fps)) fps_start_time = time.time() # 应该调整一下图片的大小 # 时间显示 timenumber = time.strftime('%Y/%m/%d/-%H:%M:%S', time.localtime(time.time())) im0 = cv2.putText(im0, timenumber, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA) im0 = cv2.putText(im0, s, (50, 80), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA) img = self.resize_img(im0) img = QImage(img.data, img.shape[1], img.shape[0], img.shape[2] * img.shape[1], QImage.Format_RGB888) right_img.setPixmap(QPixmap.fromImage(img)) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') # 使用完摄像头释放资源 if webcam: for cap in dataset.caps: cap.release() else: dataset.cap and dataset.cap.release() def resize_img(self, img): """ 调整图片大小,方便用来显示 @param img: 需要调整的图片 """ resize_scale = min(self.output_size / img.shape[0], self.output_size / img.shape[1]) img = cv2.resize(img, (0, 0), fx=resize_scale, fy=resize_scale) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def upload_img(self): """ 上传图片 """ # # 选择录像文件进行读取 # fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.jpg *.png *.tif *.jpeg') # if fileName: # self.img2predict = fileName # # 将上传照片和进行检测做成互斥的 # self.enable_btn(self.det_img_button) # self.disable_btn(self.up_img_button) # # 进行左侧原图展示 # img = cv2.imread(fileName) # # 应该调整一下图片的大小 # img = self.resize_img(img) # img = QImage(img.data, img.shape[1], img.shape[0], img.shape[2] * img.shape[1], QImage.Format_RGB888) # self.left_img.setPixmap(QPixmap.fromImage(img)) # # 上传图片之后右侧的图片重置 # self.right_img.setPixmap(QPixmap("./UI/right.jpeg")) fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.jpg *.png *.tif *.jpeg') if fileName: # 检查文件是否存在 if not os.path.exists(fileName): print("File does not exist:", fileName) return self.img2predict = fileName # 设置按钮状态 self.enable_btn(self.det_img_button) self.disable_btn(self.up_img_button) # 读取图像文件 img = cv2.imread(fileName) if img is None: print(fileName, fileType) print("Error: Could not read image. Check file format or integrity.") return # 调整图像大小 img = self.resize_img(img) # 转换为 QImage height, width, channel = img.shape bytesPerLine = channel * width qImg = QImage(img.data, width, height, bytesPerLine, QImage.Format_RGB888) # 设置左侧图像展示 self.left_img.setPixmap(QPixmap.fromImage(qImg)) # 重置右侧图像展示 self.right_img.setPixmap(QPixmap("./UI/right.jpeg")) else: print("No file selected.") def detect_img(self): """ 检测图片 """ # 重置跳出线程状态,防止其他位置使用的影响 self.jump_threading = False self.detect(self.img2predict, self.left_img, self.right_img) # 将上传照片和进行检测做成互斥的 self.enable_btn(self.up_img_button) self.disable_btn(self.det_img_button) def open_mp4(self): """ 开启视频文件检测事件 """ print("开启视频文件检测") fileName, fileType = QFileDialog.getOpenFileName(self, 'Choose file', '', '*.mp4 *.avi') if fileName: self.disable_btn(self.webcam_detection_btn) self.disable_btn(self.mp4_detection_btn) self.enable_btn(self.vid_start_stop_btn) # 生成读取视频对象 print(fileName) cap = cv2.VideoCapture(fileName) # 获取视频的帧率 fps = cap.get(cv2.CAP_PROP_FPS) # 显示原始视频帧率 self.raw_fps_value.setText(str(fps)) if cap.isOpened(): # 读取一帧用来提前左侧展示 ret, raw_img = cap.read() cap.release() else: QMessageBox.warning(self, "需要重新上传", "请重新选择视频文件") self.disable_btn(self.vid_start_stop_btn) self.enable_btn(self.webcam_detection_btn) self.enable_btn(self.mp4_detection_btn) return # 应该调整一下图片的大小 img = self.resize_img(numpy.array(raw_img)) img = QImage(img.data, img.shape[1], img.shape[0], img.shape[2] * img.shape[1], QImage.Format_RGB888) self.left_vid_img.setPixmap(QPixmap.fromImage(img)) # 上传图片之后右侧的图片重置 self.right_vid_img.setPixmap(QPixmap("./UI/right.jpeg")) self.vid_source = fileName self.jump_threading = False def open_cam(self): """ 打开摄像头事件 """ print("打开摄像头") self.disable_btn(self.webcam_detection_btn) self.disable_btn(self.mp4_detection_btn) self.enable_btn(self.vid_start_stop_btn) self.vid_source = "0" self.jump_threading = False # 生成读取视频对象 cap = cv2.VideoCapture(0) # 获取视频的帧率 fps = cap.get(cv2.CAP_PROP_FPS) # 显示原始视频帧率 self.raw_fps_value.setText(str(fps)) if cap.isOpened(): # 读取一帧用来提前左侧展示 ret, raw_img = cap.read() cap.release() else: QMessageBox.warning(self, "需要重新上传", "请重新选择视频文件") self.disable_btn(self.vid_start_stop_btn) self.enable_btn(self.webcam_detection_btn) self.enable_btn(self.mp4_detection_btn) return # 应该调整一下图片的大小 img = self.resize_img(numpy.array(raw_img)) img = QImage(img.data, img.shape[1], img.shape[0], img.shape[2] * img.shape[1], QImage.Format_RGB888) self.left_vid_img.setPixmap(QPixmap.fromImage(img)) # 上传图片之后右侧的图片重置 self.right_vid_img.setPixmap(QPixmap("./UI/right.jpeg")) def start_or_stop(self): """ 启动或者停止事件 """ print("启动或者停止") if self.threading is None: # 创造并启动一个检测视频线程 self.jump_threading = False self.threading = threading.Thread(target=self.detect_vid) self.threading.start() self.disable_btn(self.webcam_detection_btn) self.disable_btn(self.mp4_detection_btn) else: # 停止当前线程 # 线程属性置空,恢复状态 self.threading = None self.jump_threading = True self.enable_btn(self.webcam_detection_btn) self.enable_btn(self.mp4_detection_btn) def detect_vid(self): """ 视频检测 视频和摄像头的主函数是一样的,不过是传入的source不同罢了 """ print("视频开始检测") self.detect(self.vid_source, self.left_vid_img, self.right_vid_img) print("视频检测结束") # 执行完进程,刷新一下和进程有关的状态,只有self.threading是None, # 才能说明是正常结束的线程,需要被刷新状态 if self.threading is not None: self.start_or_stop() def closeEvent(self, event): """ 界面关闭事件 """ reply = QMessageBox.question( self, 'quit', "Are you sure?", QMessageBox.Yes | QMessageBox.No, QMessageBox.No ) if reply == QMessageBox.Yes: self.jump_threading = True self.close() event.accept() else: event.ignore() if __name__ == "__main__": app = QApplication(sys.argv) mainWindow = MainWindow() mainWindow.show() sys.exit(app.exec_())
- import argparse
- import logging
- import math
- import os
- import random
- import time
- from copy import deepcopy
- from pathlib import Path
- from threading import Thread
-
- import numpy as np
- import torch.distributed as dist
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- import torch.optim.lr_scheduler as lr_scheduler
- import torch.utils.data
- import yaml
- from torch.cuda import amp
- from torch.nn.parallel import DistributedDataParallel as DDP
- from torch.utils.tensorboard import SummaryWriter
- from tqdm import tqdm
-
- import test # import test.py to get mAP after each epoch
- from models.experimental import attempt_load
- from models.yolo import Model
- from utils.autoanchor import check_anchors
- from utils.datasets import create_dataloader
- from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
- fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
- check_requirements, print_mutation, set_logging, one_cycle, colorstr
- from utils.google_utils import attempt_download
- from utils.loss import ComputeLoss
- from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
- from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
- from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
-
- logger = logging.getLogger(__name__)
-
-
- def train(hyp, opt, device, tb_writer=None):
- logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
- save_dir, epochs, batch_size, total_batch_size, weights, rank = \
- Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
-
- # Directories
- wdir = save_dir / 'weights'
- wdir.mkdir(parents=True, exist_ok=True) # make dir
- last = wdir / 'last.pt'
- best = wdir / 'best.pt'
- results_file = save_dir / 'results.txt'
-
- # Save run settings
- with open(save_dir / 'hyp.yaml', 'w') as f:
- yaml.dump(hyp, f, sort_keys=False)
- with open(save_dir / 'opt.yaml', 'w') as f:
- yaml.dump(vars(opt), f, sort_keys=False)
-
- # Configure
- plots = not opt.evolve # create plots
- cuda = device.type != 'cpu'
- init_seeds(2 + rank)
- with open(opt.data) as f:
- data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
- is_coco = opt.data.endswith('coco.yaml')
-
- # Logging- Doing this before checking the dataset. Might update data_dict
- loggers = {'wandb': None} # loggers dict
- if rank in [-1, 0]:
- opt.hyp = hyp # add hyperparameters
- run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
- wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
- loggers['wandb'] = wandb_logger.wandb
- data_dict = wandb_logger.data_dict
- if wandb_logger.wandb:
- weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
-
- nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
- names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
- assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
-
- # Model
- pretrained = weights.endswith('.pt')
- if pretrained:
- with torch_distributed_zero_first(rank):
- attempt_download(weights) # download if not found locally
- ckpt = torch.load(weights, map_location=device) # load checkpoint
- model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
- state_dict = ckpt['model'].float().state_dict() # to FP32
- state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
- model.load_state_dict(state_dict, strict=False) # load
- logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
- else:
- model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
- with torch_distributed_zero_first(rank):
- check_dataset(data_dict) # check
- train_path = data_dict['train']
- test_path = data_dict['val']
-
- # Freeze
- freeze = [] # parameter names to freeze (full or partial)
- for k, v in model.named_parameters():
- v.requires_grad = True # train all layers
- if any(x in k for x in freeze):
- print('freezing %s' % k)
- v.requires_grad = False
-
- # Optimizer
- nbs = 64 # nominal batch size
- accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
- hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
- logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
-
- pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
- for k, v in model.named_modules():
- if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
- pg2.append(v.bias) # biases
- if isinstance(v, nn.BatchNorm2d):
- pg0.append(v.weight) # no decay
- elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
- pg1.append(v.weight) # apply decay
-
- if opt.adam:
- optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
- else:
- optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
-
- optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
- optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
- logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
- del pg0, pg1, pg2
-
- # Scheduler https://arxiv.org/pdf/1812.01187.pdf
- # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
- if opt.linear_lr:
- lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
- else:
- lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
- scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
- # plot_lr_scheduler(optimizer, scheduler, epochs)
-
- # EMA
- ema = ModelEMA(model) if rank in [-1, 0] else None
-
- # Resume
- start_epoch, best_fitness = 0, 0.0
- if pretrained:
- # Optimizer
- if ckpt['optimizer'] is not None:
- optimizer.load_state_dict(ckpt['optimizer'])
- best_fitness = ckpt['best_fitness']
-
- # EMA
- if ema and ckpt.get('ema'):
- ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
- ema.updates = ckpt['updates']
-
- # Results
- if ckpt.get('training_results') is not None:
- results_file.write_text(ckpt['training_results']) # write results.txt
-
- # Epochs
- start_epoch = ckpt['epoch'] + 1
- if opt.resume:
- assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
- if epochs < start_epoch:
- logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
- (weights, ckpt['epoch'], epochs))
- epochs += ckpt['epoch'] # finetune additional epochs
-
- del ckpt, state_dict
-
- # Image sizes
- gs = max(int(model.stride.max()), 32) # grid size (max stride)
- nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
- imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
-
- # DP mode
- if cuda and rank == -1 and torch.cuda.device_count() > 1:
- model = torch.nn.DataParallel(model)
-
- # SyncBatchNorm
- if opt.sync_bn and cuda and rank != -1:
- model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
- logger.info('Using SyncBatchNorm()')
-
- # Trainloader
- dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
- hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
- world_size=opt.world_size, workers=opt.workers,
- image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
- mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
- nb = len(dataloader) # number of batches
- assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
-
- # Process 0
- if rank in [-1, 0]:
- testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
- hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
- world_size=opt.world_size, workers=opt.workers,
- pad=0.5, prefix=colorstr('val: '))[0]
-
- if not opt.resume:
- labels = np.concatenate(dataset.labels, 0)
- c = torch.tensor(labels[:, 0]) # classes
- # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
- # model._initialize_biases(cf.to(device))
- if plots:
- plot_labels(labels, names, save_dir, loggers)
- if tb_writer:
- tb_writer.add_histogram('classes', c, 0)
-
- # Anchors
- if not opt.noautoanchor:
- check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
- model.half().float() # pre-reduce anchor precision
-
- # DDP mode
- if cuda and rank != -1:
- model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
- # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
- find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
-
- # Model parameters
- hyp['box'] *= 3. / nl # scale to layers
- hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
- hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
- hyp['label_smoothing'] = opt.label_smoothing
- model.nc = nc # attach number of classes to model
- model.hyp = hyp # attach hyperparameters to model
- model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
- model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
- model.names = names
-
- # Start training
- t0 = time.time()
- nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
- # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
- maps = np.zeros(nc) # mAP per class
- results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
- scheduler.last_epoch = start_epoch - 1 # do not move
- scaler = amp.GradScaler(enabled=cuda)
- compute_loss = ComputeLoss(model) # init loss class
- logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
- f'Using {dataloader.num_workers} dataloader workers\n'
- f'Logging results to {save_dir}\n'
- f'Starting training for {epochs} epochs...')
- for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
- model.train()
-
- # Update image weights (optional)
- if opt.image_weights:
- # Generate indices
- if rank in [-1, 0]:
- cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
- iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
- dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
- # Broadcast if DDP
- if rank != -1:
- indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
- dist.broadcast(indices, 0)
- if rank != 0:
- dataset.indices = indices.cpu().numpy()
-
- # Update mosaic border
- # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
- # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
-
- mloss = torch.zeros(4, device=device) # mean losses
- if rank != -1:
- dataloader.sampler.set_epoch(epoch)
- pbar = enumerate(dataloader)
- logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
- if rank in [-1, 0]:
- pbar = tqdm(pbar, total=nb) # progress bar
- optimizer.zero_grad()
- for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
- ni = i + nb * epoch # number integrated batches (since train start)
- imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
-
- # Warmup
- if ni <= nw:
- xi = [0, nw] # x interp
- # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
- accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
- for j, x in enumerate(optimizer.param_groups):
- # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
- x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
- if 'momentum' in x:
- x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
-
- # Multi-scale
- if opt.multi_scale:
- sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
- sf = sz / max(imgs.shape[2:]) # scale factor
- if sf != 1:
- ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
- imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
-
- # Forward
- with amp.autocast(enabled=cuda):
- pred = model(imgs) # forward
- loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
- if rank != -1:
- loss *= opt.world_size # gradient averaged between devices in DDP mode
- if opt.quad:
- loss *= 4.
-
- # Backward
- scaler.scale(loss).backward()
-
- # Optimize
- if ni % accumulate == 0:
- scaler.step(optimizer) # optimizer.step
- scaler.update()
- optimizer.zero_grad()
- if ema:
- ema.update(model)
-
- # Print
- if rank in [-1, 0]:
- mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
- mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
- s = ('%10s' * 2 + '%10.4g' * 6) % (
- '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
- pbar.set_description(s)
-
- # Plot
- if plots and ni < 3:
- f = save_dir / f'train_batch{ni}.jpg' # filename
- Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
- # if tb_writer:
- # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
- # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
- elif plots and ni == 10 and wandb_logger.wandb:
- wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
- save_dir.glob('train*.jpg') if x.exists()]})
-
- # end batch ------------------------------------------------------------------------------------------------
- # end epoch ----------------------------------------------------------------------------------------------------
-
- # Scheduler
- lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
- scheduler.step()
-
- # DDP process 0 or single-GPU
- if rank in [-1, 0]:
- # mAP
- ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
- final_epoch = epoch + 1 == epochs
- if not opt.notest or final_epoch: # Calculate mAP
- wandb_logger.current_epoch = epoch + 1
- results, maps, times = test.test(data_dict,
- batch_size=batch_size * 2,
- imgsz=imgsz_test,
- model=ema.ema,
- single_cls=opt.single_cls,
- dataloader=testloader,
- save_dir=save_dir,
- verbose=nc < 50 and final_epoch,
- plots=plots and final_epoch,
- wandb_logger=wandb_logger,
- compute_loss=compute_loss,
- is_coco=is_coco)
-
- # Write
- with open(results_file, 'a') as f:
- f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
- if len(opt.name) and opt.bucket:
- os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
-
- # Log
- tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
- 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
- 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
- 'x/lr0', 'x/lr1', 'x/lr2'] # params
- for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
- if tb_writer:
- tb_writer.add_scalar(tag, x, epoch) # tensorboard
- if wandb_logger.wandb:
- wandb_logger.log({tag: x}) # W&B
-
- # Update best mAP
- fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
- if fi > best_fitness:
- best_fitness = fi
- wandb_logger.end_epoch(best_result=best_fitness == fi)
-
- # Save model
- if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
- ckpt = {'epoch': epoch,
- 'best_fitness': best_fitness,
- 'training_results': results_file.read_text(),
- 'model': deepcopy(model.module if is_parallel(model) else model).half(),
- 'ema': deepcopy(ema.ema).half(),
- 'updates': ema.updates,
- 'optimizer': optimizer.state_dict(),
- 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
-
- # Save last, best and delete
- torch.save(ckpt, last)
- if best_fitness == fi:
- torch.save(ckpt, best)
- if wandb_logger.wandb:
- if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
- wandb_logger.log_model(
- last.parent, opt, epoch, fi, best_model=best_fitness == fi)
- del ckpt
-
- # end epoch ----------------------------------------------------------------------------------------------------
- # end training
- if rank in [-1, 0]:
- # Plots
- if plots:
- plot_results(save_dir=save_dir) # save as results.png
- if wandb_logger.wandb:
- files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
- wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
- if (save_dir / f).exists()]})
- # Test best.pt
- logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
- if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
- for m in (last, best) if best.exists() else (last): # speed, mAP tests
- results, _, _ = test.test(opt.data,
- batch_size=batch_size * 2,
- imgsz=imgsz_test,
- conf_thres=0.001,
- iou_thres=0.7,
- model=attempt_load(m, device).half(),
- single_cls=opt.single_cls,
- dataloader=testloader,
- save_dir=save_dir,
- save_json=True,
- plots=False,
- is_coco=is_coco)
-
- # Strip optimizers
- final = best if best.exists() else last # final model
- for f in last, best:
- if f.exists():
- strip_optimizer(f) # strip optimizers
- if opt.bucket:
- os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
- if wandb_logger.wandb and not opt.evolve: # Log the stripped model
- wandb_logger.wandb.log_artifact(str(final), type='model',
- name='run_' + wandb_logger.wandb_run.id + '_model',
- aliases=['last', 'best', 'stripped'])
- wandb_logger.finish_run()
- else:
- dist.destroy_process_group()
- torch.cuda.empty_cache()
- return results
-
-
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='weights/yolov5s.pt', help='initial weights path')
- parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
- parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path')
- parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
- parser.add_argument('--epochs', type=int, default=300)
- parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
- parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
- parser.add_argument('--rect', action='store_true', help='rectangular training')
- parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
- parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
- parser.add_argument('--notest', action='store_true', help='only test final epoch')
- parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
- parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
- parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
- parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
- parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
- parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
- parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
- parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
- parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
- parser.add_argument('--workers', type=int, default=0, help='maximum number of dataloader workers')
- parser.add_argument('--project', default='runs/train', help='save to project/name')
- parser.add_argument('--entity', default=None, help='W&B entity')
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--quad', action='store_true', help='quad dataloader')
- parser.add_argument('--linear-lr', action='store_true', help='linear LR')
- parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
- parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
- parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
- parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
- parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
- opt = parser.parse_args()
-
- # Set DDP variables
- opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
- opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
- set_logging(opt.global_rank)
- if opt.global_rank in [-1, 0]:
- check_git_status()
- check_requirements()
-
- # Resume
- wandb_run = check_wandb_resume(opt)
- if opt.resume and not wandb_run: # resume an interrupted run
- ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
- assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
- apriori = opt.global_rank, opt.local_rank
- with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
- opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
- opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
- logger.info('Resuming training from %s' % ckpt)
- else:
- # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
- opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
- assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
- opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
- opt.name = 'evolve' if opt.evolve else opt.name
- opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
-
- # DDP mode
- opt.total_batch_size = opt.batch_size
- device = select_device(opt.device, batch_size=opt.batch_size)
- if opt.local_rank != -1:
- assert torch.cuda.device_count() > opt.local_rank
- torch.cuda.set_device(opt.local_rank)
- device = torch.device('cuda', opt.local_rank)
- dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
- assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
- opt.batch_size = opt.total_batch_size // opt.world_size
-
- # Hyperparameters
- with open(opt.hyp) as f:
- hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
-
- # Train
- logger.info(opt)
- if not opt.evolve:
- tb_writer = None # init loggers
- if opt.global_rank in [-1, 0]:
- prefix = colorstr('tensorboard: ')
- logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
- tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
- train(hyp, opt, device, tb_writer)
-
- # Evolve hyperparameters (optional)
- else:
- # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
- meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
- 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
- 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
- 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
- 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
- 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
- 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
- 'box': (1, 0.02, 0.2), # box loss gain
- 'cls': (1, 0.2, 4.0), # cls loss gain
- 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
- 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
- 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
- 'iou_t': (0, 0.1, 0.7), # IoU training threshold
- 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
- 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
- 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
- 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
- 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
- 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
- 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
- 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
- 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
- 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
- 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
- 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
- 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
- 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
- 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
-
- assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
- opt.notest, opt.nosave = True, True # only test/save final epoch
- # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
- yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
- if opt.bucket:
- os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
-
- for _ in range(300): # generations to evolve
- if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
- # Select parent(s)
- parent = 'single' # parent selection method: 'single' or 'weighted'
- x = np.loadtxt('evolve.txt', ndmin=2)
- n = min(5, len(x)) # number of previous results to consider
- x = x[np.argsort(-fitness(x))][:n] # top n mutations
- w = fitness(x) - fitness(x).min() # weights
- if parent == 'single' or len(x) == 1:
- # x = x[random.randint(0, n - 1)] # random selection
- x = x[random.choices(range(n), weights=w)[0]] # weighted selection
- elif parent == 'weighted':
- x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
-
- # Mutate
- mp, s = 0.8, 0.2 # mutation probability, sigma
- npr = np.random
- npr.seed(int(time.time()))
- g = np.array([x[0] for x in meta.values()]) # gains 0-1
- ng = len(meta)
- v = np.ones(ng)
- while all(v == 1): # mutate until a change occurs (prevent duplicates)
- v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
- for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
- hyp[k] = float(x[i + 7] * v[i]) # mutate
-
- # Constrain to limits
- for k, v in meta.items():
- hyp[k] = max(hyp[k], v[1]) # lower limit
- hyp[k] = min(hyp[k], v[2]) # upper limit
- hyp[k] = round(hyp[k], 5) # significant digits
-
- # Train mutation
- results = train(hyp.copy(), opt, device)
-
- # Write mutation results
- print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
-
- # Plot results
- plot_evolution(yaml_file)
- print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
- f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。