赞
踩
后续发
Tensor是深度学习中广泛使用的数据结构,是多维数组或矩阵的泛化
在深度学习框架中,如TensorFlow和PyTorch,Tensor被用来表示输入数据、模型参数和输出数据
注意事项:
常见的场景:
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 加载手写数字数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True)
# 定义简单的神经网络模型
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = x.view(-1, 28 * 28) # 将输入展平成向量
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# 初始化模型、损失函数和优化器
net = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# 训练模型
for epoch in range(5): # 迭代5轮
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad() # 梯度清零
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 1000 == 999: # 每1000个batch打印一次损失值
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 1000))
running_loss = 0.0
print('Finished Training')
截图如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。