赞
踩
算法参考:http://www.zengqiang.club/blog/34
GUI参考:https://blog.csdn.net/wzh191920/article/details/79589506
基于opencv的模板识别来实现的车牌识别功能。用pycharm写的。
车牌识别的步骤:定位车牌,矫正车牌,识别颜色,分割字符,识别字符。
通过对输出图片进行一系列的处理后,筛选出矩形区域
if type(car_pic) == type(""): img = imreadex(car_pic) else: img = car_pic pic_hight, pic_width = img.shape[:2] if pic_width > MAX_WIDTH: resize_rate = MAX_WIDTH / pic_width img = cv2.resize(img, (MAX_WIDTH, int(pic_hight * resize_rate)), interpolation=cv2.INTER_AREA) blur = self.cfg["blur"] # 高斯去噪 if blur > 0: img = cv2.GaussianBlur(img, (blur, blur), 0) # 图片分辨率调整 oldimg = img gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #灰度处理 Sobel_x = cv2.Sobel(gray_image, cv2.CV_16S, 1, 0) #sobel算子边缘检测 absX = cv2.convertScaleAbs(Sobel_x) #转回uint8 image = absX ret, image = cv2.threshold(image, 0, 255, cv2.THRESH_OTSU) #自适应阈值处理 kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (14, 5)) #闭运算,白色部分练成整体 image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX, iterations=1) kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20, 1)) #去除小白点 kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1, 19)) image = cv2.dilate(image, kernelX) #膨胀 image = cv2.erode(image, kernelX) #腐蚀 image = cv2.erode(image, kernelY) #腐蚀 image = cv2.dilate(image, kernelY) #膨胀 image = cv2.medianBlur(image, 15) #中值滤波去除噪点 contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)#轮廓检测 # 一一排除不是车牌的矩形区域 car_contours = [] #筛选车牌位置的轮廓 for cnt in contours: rect = cv2.minAreaRect(cnt) area_width, area_height = rect[1] if area_width < area_height: area_width, area_height = area_height, area_width wh_ratio = area_width / area_height # print(wh_ratio) # 要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除 if wh_ratio > 2 and wh_ratio < 5.5: car_contours.append(rect) box = cv2.boxPoints(rect) box = np.int0(box) print("精确定位")
card_imgs = [] # 矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位 for rect in car_contours: if rect[2] > -1 and rect[2] < 1: # 创造角度,使得左、高、右、低拿到正确的值 angle = 1 else: angle = rect[2] rect = (rect[0], (rect[1][0] + 5, rect[1][1] + 5), angle) # 扩大范围,避免车牌边缘被排除 box = cv2.boxPoints(rect) heigth_point = right_point = [0, 0] left_point = low_point = [pic_width, pic_hight] for point in box: if left_point[0] > point[0]: left_point = point if low_point[1] > point[1]: low_point = point if heigth_point[1] < point[1]: heigth_point = point if right_point[0] < point[0]: right_point = point if left_point[1] <= right_point[1]: # 正角度 new_right_point = [right_point[0], heigth_point[1]] pts2 = np.float32([left_point, heigth_point, new_right_point]) # 字符只是高度需要改变 pts1 = np.float32([left_point, heigth_point, right_point]) M = cv2.getAffineTransform(pts1, pts2) dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight)) point_limit(new_right_point) point_limit(heigth_point) point_limit(left_point) card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])] card_imgs.append(card_img) elif left_point[1] > right_point[1]: # 负角度 new_left_point = [left_point[0], heigth_point[1]] pts2 = np.float32([new_left_point, heigth_point, right_point]) # 字符只是高度需要改变 pts1 = np.float32([left_point, heigth_point, right_point]) M = cv2.getAffineTransform(pts1, pts2) dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight)) point_limit(right_point) point_limit(heigth_point) point_limit(new_left_point) card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])] card_imgs.append(card_img)
colors = [] for card_index, card_img in enumerate(card_imgs): green = yello = blue = black = white = 0 card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV) # 有转换失败的可能,原因来自于上面矫正矩形出错 if card_img_hsv is None: continue row_num, col_num = card_img_hsv.shape[:2] card_img_count = row_num * col_num for i in range(row_num): for j in range(col_num): H = card_img_hsv.item(i, j, 0) S = card_img_hsv.item(i, j, 1) V = card_img_hsv.item(i, j, 2) if 11 < H <= 34 and S > 34: # 图片分辨率调整 yello += 1 elif 35 < H <= 99 and S > 34: # 图片分辨率调整 green += 1 elif 99 < H <= 124 and S > 34: # 图片分辨率调整 blue += 1 if 0 < H < 180 and 0 < S < 255 and 0 < V < 46: black += 1 elif 0 < H < 180 and 0 < S < 43 and 221 < V < 225: white += 1 color = "no" limit1 = limit2 = 0 if yello * 2 >= card_img_count: color = "yello" limit1 = 11 limit2 = 34 # 有的图片有色偏偏绿 elif green * 2 >= card_img_count: color = "green" limit1 = 35 limit2 = 99 elif blue * 2 >= card_img_count: color = "blue" limit1 = 100 limit2 = 124 # 有的图片有色偏偏紫 elif black + white >= card_img_count * 0.7: # TODO color = "bw" print(color) colors.append(color) print(blue, green, yello, black, white, card_img_count) if limit1 == 0: continue
predict_result = [] word_images = [] roi = None card_color = None for i, color in enumerate(colors): if color in ("blue", "yello", "green"): card_img = card_imgs[i] # 定位的车牌 gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY) # 黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向 if color == "green" or color == "yello": gray_img = cv2.bitwise_not(gray_img) ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) # 查找水平直方图波峰 x_histogram = np.sum(gray_img, axis=1) x_min = np.min(x_histogram) x_average = np.sum(x_histogram) / x_histogram.shape[0] x_threshold = (x_min + x_average) / 2 wave_peaks = find_waves(x_threshold, x_histogram) if len(wave_peaks) == 0: print("peak less 0:") continue # 认为水平方向,最大的波峰为车牌区域 wave = max(wave_peaks, key=lambda x: x[1] - x[0]) gray_img = gray_img[wave[0]:wave[1]] # 查找垂直直方图波峰 row_num, col_num = gray_img.shape[:2] # 去掉车牌上下边缘1个像素,避免白边影响阈值判断 gray_img = gray_img[1:row_num - 1] y_histogram = np.sum(gray_img, axis=0) y_min = np.min(y_histogram) y_average = np.sum(y_histogram) / y_histogram.shape[0] y_threshold = (y_min + y_average) / 5 # U和0要求阈值偏小,否则U和0会被分成两半 wave_peaks = find_waves(y_threshold, y_histogram) # for wave in wave_peaks: # cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) # 车牌字符数应大于6 if len(wave_peaks) <= 6: print("peak less 1:", len(wave_peaks)) continue wave = max(wave_peaks, key=lambda x: x[1] - x[0]) max_wave_dis = wave[1] - wave[0] # 判断是否是左侧车牌边缘 if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis / 3 and wave_peaks[0][0] == 0: wave_peaks.pop(0) # 组合分离汉字 cur_dis = 0 for i, wave in enumerate(wave_peaks): if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6: break else: cur_dis += wave[1] - wave[0] if i > 0: wave = (wave_peaks[0][0], wave_peaks[i][1]) wave_peaks = wave_peaks[i + 1:] wave_peaks.insert(0, wave) # 去除车牌上的分隔点 point = wave_peaks[2] if point[1] - point[0] < max_wave_dis / 3: point_img = gray_img[:, point[0]:point[1]] if np.mean(point_img) < 255 / 5: wave_peaks.pop(2) if len(wave_peaks) <= 6: print("peak less 2:", len(wave_peaks)) continue part_cards = seperate_card(gray_img, wave_peaks) for i, part_card in enumerate(part_cards): # 可能是固定车牌的铆钉 if np.mean(part_card) < 255 / 5: print("a point") continue part_card_old = part_card w = abs(part_card.shape[1] - SZ) // 2 part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value=[0, 0, 0]) part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA) word_images.append(part_card) word_images_ = word_images.copy() predict_result = template_matching(word_images_) roi = card_img card_color = color print(predict_result) break
这是一个比较简单粗糙的车牌识别系统,由于采用的是模板识别,模板数量越大,识别速度越慢,差不多识别一次要20s,并且受图片的质量影响,识别准确度不高甚至会出现无法识别的情况。但应付课程设计的话应该是足够了。要想做的更好的话建议识别字符采用opencv的SVM或者用tesseract.
算法和界面都参考了别人的博客,自己做了些整合和改动。
全部代码和模板放在github:https://github.com/panboshui/-
测试图片:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。