当前位置:   article > 正文

人工智能、机器学习、深度学习、强化学习、迁移学习概念辨析_机器学习、深度学习、迁移学习、强化学习之间的关系

机器学习、深度学习、迁移学习、强化学习之间的关系

总体看 AI>机器学习(ML)>深度学习=强化学习=迁移学习

一、人工智能

​ 1956年,计算机科学家 John McCarthy提出了“人工智能”的概念,是指在处理任务时具有人类智力特点的机器,包括具有组织和理解语言,识别物体和声音,以及学习和解决问题等能力。

 

​ 从人工智能的概念被提出到目前为止,人工智能的研究领域在不断扩大,包括专家系统、机器学习、进化计算、模糊逻辑、计算机视觉、自然语言处理、推荐系统等。通常将人工智能分为弱人工智能和强人工智能:弱人工智能让机器具备观察和感知的能力,可以做到一定程度的理解和推理;而强人工智能让机器获得自适应能力,解决一些之前没有遇到过的问题。

 

​ 目前的科研工作都集中在弱人工智能这部分,而实现弱人工智能的最主要途径是机器学习。

 

二、机器学习

​ 机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件做出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。

 

​ 机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习

 

三、深度学习

​ 最初的深度学习是利用深度神经网络(DNN)来解决特征表达的一种学习过程。深度神经网络本身并不是一个全新的概念,可大致理解为包含多个隐含层的神经网络结构。目前

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/很楠不爱3/article/detail/338545
推荐阅读
相关标签
  

闽ICP备14008679号