当前位置:   article > 正文

标准化(Normalization)和归一化实现_f.normalize 0-1

f.normalize 0-1

概念:

原因:
由于进行分类器或模型的建立与训练时,输入的数据范围可能比较大,同时样本中各数据可 能量纲不一致,这样的数据容易对模型训练或分类器的构建结果产生影响,因此需要对其进行标准 化处理,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行 比较和加权。

其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上。

z-score标准化(零均值归一化zero-mean normalization):
• 经过处理后的数据均值为0,标准差为1(正态分布
• 其中μ是样本的均值, σ是样本的标准差

代码实现

import numpy as np
import matplotlib.pyplot as plt
#归一化的两种方式
def Normalization1(x):
    '''归一化(0~1)'''
    '''x_=(x−x_min)/(x_max−x_min)'''
    return [(float(i)-min(x))/float(max(x)-min(x)) for i in x]
def Normalization2(x):
    '''归一化(-1~1)'''
    '''x_=(x−x_mean)/(x_max−x_min)'''
    return [(float(i)-np.mean(x))/(max(x)-min(x)) for i in x]
#标准化
def z_score(x):
    '''x∗=(x−μ)/σ'''
    x_mean=np.mean(x)
    s2=sum([(i-np.mean(x))*(i-np.mean(x)) for i in x])/len(x)
    return [(i-x_mean)/s2 for i in x]
 
l=[-10, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 30]
l1=[]
# for i in l:
#     i+=2
#     l1.append(i)
# print(l1)
cs=[]
for i in l:
    c=l.count(i)
    cs.append(c)
print(cs)
n=Normalization2(l)
z=z_score(l)
print(n)
print(z)
'''
蓝线为原始数据,橙线为z
'''
plt.plot(l,cs)
plt.plot(z,cs)
plt.show()

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小蓝xlanll/article/detail/275508
推荐阅读
相关标签
  

闽ICP备14008679号