当前位置:   article > 正文

Spark数据倾斜_产生原因及定位处理办法_生产环境_spark为什么会出现数据倾斜

spark为什么会出现数据倾斜

        在最近的项目中,历史和实时数据进行关联平滑时出现了数据倾斜,产生了笛卡尔积,具体现象如下:运行内存175GB,核数64,运行代码时,查看SparkUI界面的active jobs ,数据输入是1G,成功的stage为0,一直是0/120,由此,通过排查,的确发生笛卡尔积

Spark数据倾斜产生的原因及解决办法:

        Spark数据倾斜主要在shuffle过程中由于不同的key对应的数据量不同导致,具体表现是不同的task处理的数据量不同。在Spark作业中,如果存在可能导致数据倾斜的key,可以考虑将这个key进行过滤,滤除可能导致数据倾斜的数据,从而在Spark作业中避免数据倾斜。另外,提高shuffle过程中的reduce端并行度,即增加reduce端的task数量,可以使得每个task分配到的数据量减少,从而缓解数据倾斜问题

可参考文章:

Spark如何处理数据倾斜-CSDN博客

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小舞很执着/article/detail/976027
推荐阅读
相关标签
  

闽ICP备14008679号