当前位置:   article > 正文

sklearn基于pickle / joblib 的模型保存及加载_pickle模型

pickle模型

sklearn(scikit-learn)模型持久化有两种方式:

  • Python的内置模块pickle
  • scikit-learn内部的joblib
1. pickle 模型保存及加载

模型定义及训练:

from sklearn import svm
from sklearn import datasets
model_xgb = svm.SVC()
X, y= datasets.load_iris(return_X_y=True)
model_xgb.fit(X, y)
  • 1
  • 2
  • 3
  • 4
  • 5

基于 pickle 实现模型保存及加载:

import pickle 

#1.保存成Python支持的文件格式Pickle
#在当前目录下可以看到new_app_model_v1.pickle
with open('new_app_model_v1.pickle','wb') as fw:
	pickle.dump(model_xgb,fw)
#加载svm.pickle
with open('new_app_model_v1.pickle','rb') as fr:
	new_app_model_v1 = pickle.load(fr)

print (new_app_model_v1.predict_proba(X_test[0:1].values))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
2. joblib 模型保存及加载

在大量数据的情况下,最好使用scikit-learn的的joblib代替python的pickle(dump&load),这在内部装有大型numpy数组的对象上效率更高。
总结起来,joblib更适合大数据量的模型,不过joblib只能往硬盘存储,不能往字符串存储。

from sklearn.externals import joblib

# 保存模型
joblib.dump(model_xgb, 'new_app_model_v1.pkl')
print("Model dumped!")

# 把训练集中的列名保存为pkl
model_columns = list(X_train.columns)
joblib.dump(model_columns, 'new_app_model_v1_columns.pkl')
print("Models columns dumped!")

new_app_model_v1 = joblib.load('new_app_model_v1.pkl')  # Load "model.pkl"
print('Model loaded')
new_app_model_v1_columns = joblib.load('new_app_model_v1_columns.pkl')  
# Load "model_columns.pkl"

print('Model columns loaded')
print (new_app_model_v1.predict_proba(X_test[0:1].values))
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小桥流水78/article/detail/818318
推荐阅读
相关标签
  

闽ICP备14008679号