当前位置:   article > 正文

基于Pytorch框架的深度学习ConvNext神经网络宠物猫识别分类系统源码

基于Pytorch框架的深度学习ConvNext神经网络宠物猫识别分类系统源码

 第一步:准备数据

12种宠物猫类数据:self.class_indict = ["阿比西尼猫", "豹猫", "伯曼猫", "孟买猫", "英国短毛猫", "埃及猫", "缅因猫", "波斯猫", "布偶猫", "克拉特猫", "泰国暹罗猫", "加拿大无毛猫"]

,总共有2160张图片,每个文件夹单独放一种数据

第二步:搭建模型

本文选择一个ConvNext网络,其原理介绍如下:

ConvNext (Convolutional Network Net Generation), 即下一代卷积神经网络, 是近些年来 CV 领域的一个重要发展. ConvNext 由 Facebook AI Research 提出, 仅仅通过卷积结构就达到了与 Transformer 结构相媲美的 ImageNet Top-1 准确率, 这在近年来以 Transformer 为主导的视觉问题解决趋势中显得尤为突出.

第三步:训练代码

1)损失函数为:交叉熵损失函数

2)训练代码:

  1. import os
  2. import argparse
  3. import torch
  4. import torch.optim as optim
  5. from torch.utils.tensorboard import SummaryWriter
  6. from torchvision import transforms
  7. from my_dataset import MyDataSet
  8. from model import convnext_tiny as create_model
  9. from utils import read_split_data, create_lr_scheduler, get_params_groups, train_one_epoch, evaluate
  10. def main(args):
  11. device = torch.device(args.device if torch.cuda.is_available() else "cpu")
  12. print(f"using {device} device.")
  13. if os.path.exists("./weights") is False:
  14. os.makedirs("./weights")
  15. tb_writer = SummaryWriter()
  16. train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)
  17. img_size = 224
  18. data_transform = {
  19. "train": transforms.Compose([transforms.RandomResizedCrop(img_size),
  20. transforms.RandomHorizontalFlip(),
  21. transforms.ToTensor(),
  22. transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
  23. "val": transforms.Compose([transforms.Resize(int(img_size * 1.143)),
  24. transforms.CenterCrop(img_size),
  25. transforms.ToTensor(),
  26. transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
  27. # 实例化训练数据集
  28. train_dataset = MyDataSet(images_path=train_images_path,
  29. images_class=train_images_label,
  30. transform=data_transform["train"])
  31. # 实例化验证数据集
  32. val_dataset = MyDataSet(images_path=val_images_path,
  33. images_class=val_images_label,
  34. transform=data_transform["val"])
  35. batch_size = args.batch_size
  36. nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
  37. print('Using {} dataloader workers every process'.format(nw))
  38. train_loader = torch.utils.data.DataLoader(train_dataset,
  39. batch_size=batch_size,
  40. shuffle=True,
  41. pin_memory=True,
  42. num_workers=nw,
  43. collate_fn=train_dataset.collate_fn)
  44. val_loader = torch.utils.data.DataLoader(val_dataset,
  45. batch_size=batch_size,
  46. shuffle=False,
  47. pin_memory=True,
  48. num_workers=nw,
  49. collate_fn=val_dataset.collate_fn)
  50. model = create_model(num_classes=args.num_classes).to(device)
  51. if args.weights != "":
  52. assert os.path.exists(args.weights), "weights file: '{}' not exist.".format(args.weights)
  53. weights_dict = torch.load(args.weights, map_location=device)["model"]
  54. # 删除有关分类类别的权重
  55. for k in list(weights_dict.keys()):
  56. if "head" in k:
  57. del weights_dict[k]
  58. print(model.load_state_dict(weights_dict, strict=False))
  59. if args.freeze_layers:
  60. for name, para in model.named_parameters():
  61. # 除head外,其他权重全部冻结
  62. if "head" not in name:
  63. para.requires_grad_(False)
  64. else:
  65. print("training {}".format(name))
  66. # pg = [p for p in model.parameters() if p.requires_grad]
  67. pg = get_params_groups(model, weight_decay=args.wd)
  68. optimizer = optim.AdamW(pg, lr=args.lr, weight_decay=args.wd)
  69. lr_scheduler = create_lr_scheduler(optimizer, len(train_loader), args.epochs,
  70. warmup=True, warmup_epochs=1)
  71. best_acc = 0.
  72. for epoch in range(args.epochs):
  73. # train
  74. train_loss, train_acc = train_one_epoch(model=model,
  75. optimizer=optimizer,
  76. data_loader=train_loader,
  77. device=device,
  78. epoch=epoch,
  79. lr_scheduler=lr_scheduler)
  80. # validate
  81. val_loss, val_acc = evaluate(model=model,
  82. data_loader=val_loader,
  83. device=device,
  84. epoch=epoch)
  85. tags = ["train_loss", "train_acc", "val_loss", "val_acc", "learning_rate"]
  86. tb_writer.add_scalar(tags[0], train_loss, epoch)
  87. tb_writer.add_scalar(tags[1], train_acc, epoch)
  88. tb_writer.add_scalar(tags[2], val_loss, epoch)
  89. tb_writer.add_scalar(tags[3], val_acc, epoch)
  90. tb_writer.add_scalar(tags[4], optimizer.param_groups[0]["lr"], epoch)
  91. if best_acc < val_acc:
  92. torch.save(model.state_dict(), "./weights/best_model.pth")
  93. best_acc = val_acc
  94. if __name__ == '__main__':
  95. parser = argparse.ArgumentParser()
  96. parser.add_argument('--num_classes', type=int, default=12)
  97. parser.add_argument('--epochs', type=int, default=100)
  98. parser.add_argument('--batch-size', type=int, default=4)
  99. parser.add_argument('--lr', type=float, default=5e-4)
  100. parser.add_argument('--wd', type=float, default=5e-2)
  101. # 数据集所在根目录
  102. # https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz
  103. parser.add_argument('--data-path', type=str,
  104. default=r"G:\demo\data\cat_data_sets_models\cat_12_train")
  105. # 预训练权重路径,如果不想载入就设置为空字符
  106. # 链接: https://pan.baidu.com/s/1aNqQW4n_RrUlWUBNlaJRHA 密码: i83t
  107. parser.add_argument('--weights', type=str, default='./convnext_tiny_1k_224_ema.pth',
  108. help='initial weights path')
  109. # 是否冻结head以外所有权重
  110. parser.add_argument('--freeze-layers', type=bool, default=False)
  111. parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')
  112. opt = parser.parse_args()
  113. main(opt)

第四步:统计正确率

第五步:搭建GUI界面

第六步:整个工程的内容

有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码

代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习ConvNext神经网络宠物猫识别分类系统源码

​​

有问题可以私信或者留言,有问必答

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小桥流水78/article/detail/772623
推荐阅读
相关标签
  

闽ICP备14008679号