赞
踩
第三步,训练模型
logistic = LogisticRegression()
logistic.fit(x_data, y_data)
# 截距
print(logistic.intercept_)
# 系数:theta1 theta2
print(logistic.coef_)
# 预测
pred = logistic.predict(x_data)
# 输出评分
score = logistic.score(x_data, y_data)
print(score)
输出结果如下图所示:
绘制出带有决策边界的散点图:
# 绘制散点
plot_logi()
# 绘制决策边界
x_test = np.array([[-4], [3]])
y_test = -(x_test\*logistic.coef_[0, 0]+logistic.intercept_)/logistic.coef_[0, 1]
plt.plot(x_test, y_test)
plt.show()
python实现非线性逻辑回归,首先使用make_gaussian_quantiles获取一组高斯分布的数据集,代码及数据分布如下:
import matplotlib.pyplot as plt
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures
from sklearn.datasets import make_gaussian_quantiles
# 获取高斯分布的数据集,500个样本,2个特征,2分类
x_data, y_data = make_gaussian_quantiles(n_samples=500, n_features=2, n_classes=2)
# 绘制散点图
plt.scatter(x_data[:, 0], x_data[:, 1],c=y_data)
plt.show()
描述数据分布的散点图如图所示:
然后转换数据并训练模型以实现非线性逻辑回归:
# 数据转换,最高次项为五次项
poly_reg = PolynomialFeatures(degree=5)
x_poly = poly_reg.fit_transform(x_data)
# 定义逻辑回归模型
logistic = linear_model.LogisticRegression()
logistic.fit(x_poly, y_data)
score = logistic.score(x_poly, y_data)
print(score)
评分结果如图所示,达0.996:
以乳腺癌数据集为例,建立线性逻辑回归模型,并输出准确率,精确率,召回率三大指标,代码如下所示:
from sklearn.datasets import load_breast_cancer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import recall_score from sklearn.metrics import precision_score from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score import warnings warnings.filterwarnings("ignore") # 获取数据 cancer = load_breast_cancer() # 分割数据 X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, test_size=0.2) # 创建估计器 model = LogisticRegression() # 训练 model.fit(X_train, y_train) # 训练集准确率 train_score = model.score(X_train, y_train) # 测试集准确率 test_score = model.score(X_test, y_test) print('train score:{train\_score:.6f};test score:{test\_score:.6f}'.format(train_score=train_score, test_score=test_score)) print("==================================================================================") # 再对X\_test进行预测 y_pred = model.predict(X_test) print(y_pred) # 准确率 所有的判断中有多少判断正确的 accuracy_score_value = accuracy_score(y_test, y_pred) # 精确率 预测为正的样本中有多少是对的 precision_score_value = precision_score(y_test, y_pred) # 召回率 样本中有多少正样本被预测正确了 recall_score_value = recall_score(y_test, y_pred) print("准确率:", accuracy_score_value) print("精确率:", precision_score_value) print("召回率:", recall_score_value) # 输出报告模型评估报告 classification_report_value = classification_report(y_test, y_pred) print(classification_report_value)
程序输出结果如下图所示:
本次分享就到这里,小啾感谢您的关注与支持!
本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/小桥流水78/article/detail/748020
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。