当前位置:   article > 正文

【阿里魔搭】modelscope包下载安装_pip install modelscope

pip install modelscope

最终解决方案:使用源码安装modelscope

问题描述:pip安装包冲突

一开始的是在3.11的虚拟环境下使用命令行pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html下载,一直报错显示包冲突

并且是这种报错,根本没办法调和。

 modelscope[nlp] 1.9.0 depends on datasets<=2.13.0 and >=2.8.0
    modelscope[nlp] 1.8.4 depends on datasets<=2.13.0 and >=2.8.0
    modelscope[nlp] 1.8.1 depends on datasets<=2.13.0 and >=2.8.0
 modelscope[nlp] 1.6.1 depends on datasets<=2.8.0 and >=2.7.0
    modelscope[nlp] 1.6.0 depends on datasets<=2.8.0 and >=2.7.0
    modelscope[nlp] 1.5.1 depends on datasets<=2.8.0 and >=2.7.0
    modelscope[nlp] 1.4.3 depends on datasets<=2.8.0 and >=2.7.0
    modelscope[nlp] 1.4.1 depends on datasets<=2.8.0 and >=2.7.0
    modelscope[nlp] 1.3.1 depends on datasets<=2.8.0 and >=2.7.0
 modelscope[nlp] 1.1.4 depends on datasets<=2.5.2
    modelscope[nlp] 1.1.3 depends on datasets<=2.5.2
    modelscope[nlp] 1.1.2 depends on datasets<=2.5.2
    modelscope[nlp] 1.1.1 depends on datasets<=2.5.2
    modelscope[nlp] 1.1.0 depends on datasets<=2.5.2
    modelscope[nlp] 1.0.4 depends on datasets<=2.5.2
    modelscope[nlp] 1.0.3 depends on datasets<=2.5.2
    modelscope[nlp] 1.0.2 depends on datasets<=2.5.2
    modelscope[nlp] 1.0.1 depends on datasets<=2.5.2
modelscope[nlp] 0.3.7 depends on datasets==2.1.0
    modelscope[nlp] 0.3.6 depends on datasets==2.1.0
    modelscope[nlp] 0.3.5 depends on datasets==2.1.0
    modelscope[nlp] 0.3.4 depends on datasets==2.1.0
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

后来在官网找到环境安装的说明:https://www.modelscope.cn/docs/环境安装
请添加图片描述
环境配置Python版本只显示了3.7和3.8,于是重新创建虚拟环境进行安装。

首先安装深度学习框架,看你的模型是需要pytorch还是tensorflow,根据官网下载对应版本请添加图片描述
后面继续pip install "modelscope[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html 进行安装但是出现相同问题,于是尝试使用通过源码安装

安装步骤

以下是安装全过程:

  1. 创建虚拟环境并激活

    conda create -n modelscope python=3.8
    conda activate modelscope
    
    • 1
    • 2
  2. 安装深度学习框架

    Pytorch:

    pip install torch torchvision torchaudio
    
    • 1

    或Tensorflow:

    pip install --upgrade tensorflow==2.13.0 # 仅支持 CPU 的版本
    
    • 1

    注: 客观上在国内使用pip安装的时候,如果默认是用海外的pypi源的话,可能因为网络问题,下载速度受限。如果有这个现象,可以考虑通过pip的"-i"命令行选项来手工配置仓库来源,例如"-i https://pypi.tuna.tsinghua.edu.cn/simple " 可以将配置仓库来源使用"清华源"。例如:

    pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
    
    • 1

    常见的可用源还包括 “-i https://mirrors.bfsu.edu.cn/pypi/web/simple”, "-i https://mirrors.ustc.edu.cn/pypi/web/simple "等等,可以根据自己的网络条件自行选择。

  3. ModelScope Library 安装(源码安装)

    我使用pip安装失败遂不介绍,仅介绍源码安装

    1. 源码下载
      a. 可以使用git下载源码

       ```jsx
       git clone git@github.com:modelscope/modelscope.git
       cd modelscope
       git fetch origin master
       git checkout master
       ```
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6

      b. 直接在github官网下载 https://github.com/modelscope/modelscope

    2. 一定要先cd去源码所在的目录中先,否则会报错

      请添加图片描述

      可以使用命令行检查是否转到对应目录下:

      dir
      type setup.py
      
      • 1
      • 2

      请添加图片描述

    1. 安装依赖:仅需体验NLP领域模型,执行如下命令安装依赖

      pip install ".[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
      
      • 1

      期间他会提示缺少某些包而报错,根据提示单独安装对应的包即可
      请添加图片描述

      如果有安装不成功的在后面加**--trusted-host [pypi.mirrors.ustc.edu.cn](http://pypi.mirrors.ustc.edu.cn)** 以避免潜在的安全警告

      pip install xxx --trusted-host pypi.mirrors.ustc.edu.cn
      pip install ".[nlp]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html --trusted-host pypi.mirrors.ustc.edu.cn
      
      • 1
      • 2
    2. 验证:安装成功后,即可使用对应领域模型进行推理,训练等操作。这里我们以NLP领域为例。安装后,可执行如下命令,运行中文分词任务,来验证安装是否正确:

      python -c "from modelscope.pipelines import pipeline;print(pipeline('word-segmentation')('今天天气不错,适合 出去游玩'))"
      
      • 1
      (modelscope) E:\0.University\0.dissertation\code\modelscope\modelscope>python -c "from modelscope.pipelines import pipeline;print(pipeline('word-segmentation')('今
      天天气不错,适合 出去游玩'))"
      2024-03-21 10:23:41,578 - modelscope - INFO - PyTorch version 1.11.0+cpu Found.
      2024-03-21 10:23:41,580 - modelscope - INFO - Loading ast index from C:\Users\ammy\.cache\modelscope\ast_indexer
      2024-03-21 10:23:42,128 - modelscope - INFO - Loading done! Current index file version is 1.9.4, with md5 d07f5c3e9ea59df520487198f306c0b6 and a total number of 972
       components indexed
      2024-03-21 10:23:46,043 - modelscope - INFO - Model revision not specified, use default: master in development mode
      2024-03-21 10:23:46,044 - modelscope - INFO - Development mode use revision: master
      Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 243k/243k [00:00<00:00, 987kB/s]
      Downloading: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 976/976 [00:00<00:00, 194kB/s]
      Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 161/161 [00:00<00:00, 40.4kB/s]
      Downloading: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████| 46.7k/46.7k [00:00<00:00, 413kB/s]
      Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 388M/388M [02:29<00:00, 2.71MB/s]
      Downloading: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████| 9.74k/9.74k [00:00<00:00, 1.99MB/s]
      Downloading: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████| 30.0/30.0 [00:00<00:00, 7.54kB/s]
      Downloading: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████| 107k/107k [00:00<00:00, 659kB/s]
      2024-03-21 10:26:20,450 - modelscope - INFO - initiate model from C:\Users\ammy\.cache\modelscope\hub\damo\nlp_structbert_word-segmentation_chinese-base
      2024-03-21 10:26:20,450 - modelscope - INFO - initiate model from location C:\Users\ammy\.cache\modelscope\hub\damo\nlp_structbert_word-segmentation_chinese-base.
      2024-03-21 10:26:20,454 - modelscope - INFO - initialize model from C:\Users\ammy\.cache\modelscope\hub\damo\nlp_structbert_word-segmentation_chinese-base
      You are using a model of type bert to instantiate a model of type structbert. This is not supported for all configurations of models and can yield errors.
      2024-03-21 10:26:22,373 - modelscope - WARNING - No preprocessor field found in cfg.
      2024-03-21 10:26:22,373 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.
      2024-03-21 10:26:22,373 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\\Users\\amm
      y\\.cache\\modelscope\\hub\\damo\\nlp_structbert_word-segmentation_chinese-base'}. trying to build by task and model information.
      2024-03-21 10:26:22,392 - modelscope - INFO - cuda is not available, using cpu instead.
      2024-03-21 10:26:22,397 - modelscope - WARNING - No preprocessor field found in cfg.
      2024-03-21 10:26:22,397 - modelscope - WARNING - No val key and type key found in preprocessor domain of configuration.json file.
      2024-03-21 10:26:22,397 - modelscope - WARNING - Cannot find available config to build preprocessor at mode inference, current config: {'model_dir': 'C:\\Users\\amm
      y\\.cache\\modelscope\\hub\\damo\\nlp_structbert_word-segmentation_chinese-base', 'sequence_length': 512}. trying to build by task and model information.
      E:\anaconda\envs\modelscope\lib\site-packages\transformers\modeling_utils.py:977: FutureWarning: The `device` argument is deprecated and will be removed in v5 of Tr
      ansformers.
        warnings.warn(
      {'output': ['今天', '天气', '不错', ',', '适合', '出去', '游玩']}
      
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23
      • 24
      • 25
      • 26
      • 27
      • 28
      • 29
      • 30
      • 31
      • 32
      • 33
      • 34

参考:

https://www.modelscope.cn/docs/环境安装

https://blog.csdn.net/qq_41185868/article/details/127355894

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小惠珠哦/article/detail/770252
推荐阅读
相关标签
  

闽ICP备14008679号