当前位置:   article > 正文

蓝桥备赛——矩阵读入

蓝桥备赛——矩阵读入

题目描述 

如上图所示,是一道有关二维前缀和的问题,因为涉及到二维,肯定就是以矩阵的形式进行读入的。

为此,针对矩阵的读入形式进行总结,可以大致总结出两种类型如下:

二维列表推导式

  1. n, m, k = map(int, input().split())
  2. mat = []
  3. for i in range(n):
  4. mat.append(list(map(int, input().split())))
  5. pre = [[0 for _ in range(m)] for _ in range(n + 1)]
  6. for i in range(1, n + 1):
  7. for j in range(m):
  8. pre[i][j] = pre[i - 1][j] + mat[i - 1][j]

 可以看到上面代码的

pre = [[0 for _ in range(m)] for _ in range(n + 1)]

表示的是对于第一个[ ]中的元素是生成一个行向量,对于外面的第二个[ ]表示的是生成多少行的列表。

经过上面的代码,可以获得一个列表为

即获得了一个所有元素都为0的列表。后面再不停地读入元素进行原内容覆盖。

自创的方法

  1. n,m,k=map(int,input().split())
  2. mas=[]
  3. for i in range(n):
  4. matrix = []
  5. matrix.extend(map(int,input().split()))
  6. mas.append(matrix)
  7. print(mas)

 同样是先读入数据,不过需要额外创建一个列表作为中转,将数据读入后,再将其作为整体append到一个新的列表,即可达到上面二维列表推导式的效果。

与上面方法不同的地方是,不需要再重新将元素全部覆盖,所录入列表的即为最终数据。

AC Code

  1. n, m, k = map(int, input().split())
  2. mat = []
  3. for i in range(n):
  4. mat.append(list(map(int, input().split())))
  5. pre = [[0 for _ in range(m)] for _ in range(n + 1)]
  6. for i in range(1, n + 1):
  7. for j in range(m):
  8. pre[i][j] = pre[i - 1][j] + mat[i - 1][j]
  9. ans = 0
  10. for i in range(n):
  11. for j in range(i, n):
  12. l, r, sum = 0, 0, 0
  13. while r < m:
  14. sum += pre[j + 1][r] - pre[i][r]
  15. while sum > k:
  16. sum -= pre[j + 1][l] - pre[i][l]
  17. l += 1
  18. ans += r - l + 1
  19. r += 1
  20. print(ans)

现在来解释一下上面的代码

  1. n, m, k = map(int, input().split())
  2. mat = []
  3. for i in range(n):
  4. mat.append(list(map(int, input().split())))
  5. pre = [[0 for _ in range(m)] for _ in range(n + 1)]
  6. for i in range(1, n + 1):
  7. for j in range(m):
  8. pre[i][j] = pre[i - 1][j] + mat[i - 1][j]

这块代码的作用就是读入相关数据

  1. ans = 0
  2. for i in range(n):
  3. for j in range(i, n):
  4. l, r, sum = 0, 0, 0
  5. while r < m:
  6. sum += pre[j + 1][r] - pre[i][r]
  7. while sum > k:
  8. sum -= pre[j + 1][l] - pre[i][l]
  9. l += 1
  10. ans += r - l + 1
  11. r += 1
  12. print(ans)

上面代码的作用就是对应:

for i in range(1, n + 1): for j in range(m): pre[i][j] = pre[i - 1][j] + mat[i - 1][j]:计算前缀和矩阵pre。对于pre[i][j],表示原始矩阵中第i-1行(因为前缀和矩阵行数比原始矩阵多了1)以及前j列的元素之和。

ans = 0:初始化变量ans,用于记录满足条件的子矩阵数量。

for i in range(n): for j in range(i, n)::遍历所有可能的子矩阵的上边界i和下边界j

l, r, sum = 0, 0, 0:初始化左边界l、右边界r以及子矩阵元素之和sum

while r < m: sum += pre[j + 1][r] - pre[i][r]:在子矩阵的右边界r小于列数m时,计算子矩阵在当前列的元素之和。

while sum > k: sum -= pre[j + 1][l] - pre[i][l] l += 1:如果子矩阵的元素之和超过了限定值k,则移动左边界l,直到子矩阵的元素之和不再超过k

ans += r - l + 1:更新满足条件的子矩阵数量。

r += 1:向右移动子矩阵的右边界r

print(ans):输出满足条件的子矩阵数量。

该算法的时间复杂度为O(n^3 * m),因为有三层嵌套循环分别遍历行、列和子矩阵。

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/374269
推荐阅读
相关标签
  

闽ICP备14008679号