当前位置:   article > 正文

AlexNet学习笔记_resample2d

resample2d

1.网络结构

上图从左到右:

   第0层是输入层:输入大小为227×227×3大小的RGB图像

   第1层是卷积层:(1)使用96个11×11×3的卷积核,s=4,p=0,输入为上一层的输出(下同),输出数据维度为55×55×96

                              (2)Local response normalization                        

                              (3)Relu(),输出数据维度为55×55×96                           

ReLU本来是不需要对输入进行标准化,但本文发现进行局部标准化能提高性能。

                           

其中代表在feature map中(x,y)坐标处经过第i个卷积核处和ReLU激活函数的输出,这个式子的含义就是一个值和它前后的n个值做标准化。k,n,α,β是超参数,本文由验证集确定为k=2,n=5,α=10−4,β=0.75。求和发生在feature map中,相同位置(x,y)n个相邻kernel map上。其中N是卷积核的总数,符号maxmin是为了表示边缘几层的标准化方式。输出数据维度为55×55×96

 

                             (4)Max pooling,最大池化,s=2,f=3,输出数据维度是27×27×96

          

    第2层是卷积层:(1)使用256个5×5×48的卷积核,s=1,p=2,输入为上一层的输出(下同),输出数据维度为27×27×256

                               (2)Local response normalization 

                               (3)Relu(),输出数据维度为27×27×256

                               (4)Max pooling,最大池化,s=2,f=3,输出数据维度是13×13×256

 

    第3层是卷积层:(1)使用384个3×3×256的卷积核,s=1,p=1,输入为上一层的输出(下同),输出数据维度为13×13×384

                               (2)Relu(),输出数据维度为13×13×384

                                    本层无标准化,无池化

 

    第4层是卷积层:(1)使用384个3×3×192的卷积核,s=1,p=1,输入为上一层的输出(下同),输出数据维度为13×13×384

                               (2)Relu(),输出数据维度为13×13×384

                                    本层无标准化,无池化

    

    第5层是卷积层:(1)使用256个3×3×192的卷积核,s=1,p=1,输入为上一层的输出(下同),输出数据维度为13×13×256

                               (2)Relu(),输出数据维度为13×13×256

                               (3)Max pooling,最大池化,s=2,f=3,输出数据维度是6×6×256

    第6、7、8层都是全连接层,分别有4096,4096,1000个神经元

 

 

 

 

 

本文内容由网友自发贡献,转载请注明出处:https://www.wpsshop.cn/w/小小林熬夜学编程/article/detail/351077
推荐阅读
相关标签
  

闽ICP备14008679号