赞
踩
本文章向大家介绍【深度学习】使用tensorflow实现VGG19网络,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。
VGG网络与AlexNet类似,也是一种CNN,VGG在2014年的 ILSVRC localization and classification 两个问题上分别取得了第一名和第二名。VGG网络非常深,通常有16-19层,卷积核大小为 3 x 3,16和19层的区别主要在于后面三个卷积部分卷积层的数量。第二个用tensorflow独立完成的小玩意儿......
模型结构
可以看到VGG的前几层为卷积和maxpool的交替,每个卷积包含多个卷积层,后面紧跟三个全连接层。激活函数采用Relu,训练采用了dropout,但并没有像AlexNet一样采用LRN(论文给出的理由是加LRN实验效果不好)。
模型定义
- def maxPoolLayer(x, kHeight, kWidth, strideX, strideY, name, padding = "SAME"):
- """max-pooling"""
- return tf.nn.max_pool(x, ksize = [1, kHeight, kWidth, 1],
- strides = [1, strideX, strideY, 1], padding = padding, name = name)
-
- def dropout(x, keepPro, name = None):
- """dropout"""
- return tf.nn.dropout(x, keepPro, name)
-
- def fcLayer(x, inputD, outputD, reluFlag, name):
- """fully-connect"""
- with tf.variable_scope(name) as scope:
- w = tf.get_variable("w", shape = [inputD, outputD], dtype = "float")
- b = tf.get_variable("b", [outputD], dtype = "float")
- out = tf.nn.xw_plus_b(x, w, b, name = scope.name)
- if reluFlag:
- return tf.nn.relu(out)
- else:
- return out
-
- def convLayer(x, kHeight, kWidth, strideX, strideY,
- featureNum, name, padding = "SAME"):
- """convlutional"""
- channel = int(x.get_shape()[-1]) #获取channel数
- with tf.variable_scope(name) as scope:
- w = tf.get_variable("w", shape = [kHeight, kWidth, channel, featureNum])
- b = tf.get_variable("b", shape = [featureNum])
- featureMap = tf.nn.conv2d(x, w, strides = [1, strideY, strideX, 1], padding = padding)
- out = tf.nn.bias_add(featureMap, b)
- return tf.nn.relu(tf.reshape(out, featureMap.get_shape().as_list()), name = scope.name)

定义了卷积、pooling、dropout、全连接五个模块,使用了上一篇AlexNet中的代码,其中卷积模块去除了group参数,因为网络没有像AlexNet一样分成两部分。接下来定义VGG19。
- class VGG19(object):
- """VGG model"""
- def __init__(self, x, keepPro, classNum, skip, modelPath = "vgg19.npy"):
- self.X = x
- self.KEEPPRO = keepPro
- self.CLASSNUM = classNum
- self.SKIP = skip
- self.MODELPATH = modelPath
- #build CNN
- self.buildCNN()
-
- def buildCNN(self):
- """build model"""
- conv1_1 = convLayer(self.X, 3, 3, 1, 1, 64, "conv1_1" )
- conv1_2 = convLayer(conv1_1, 3, 3, 1, 1, 64, "conv1_2")
- pool1 = maxPoolLayer(conv1_2, 2, 2, 2, 2, "pool1")
-
- conv2_1 = convLayer(pool1, 3, 3, 1, 1, 128, "conv2_1")
- conv2_2 = convLayer(conv2_1, 3, 3, 1, 1, 128, "conv2_2")
- pool2 = maxPoolLayer(conv2_2, 2, 2, 2, 2, "pool2")
-
- conv3_1 = convLayer(pool2, 3, 3, 1, 1, 256, "conv3_1")
- conv3_2 = convLayer(conv3_1, 3, 3, 1, 1, 256, "conv3_2")
- conv3_3 = convLayer(conv3_2, 3, 3, 1, 1, 256, "conv3_3")
- conv3_4 = convLayer(conv3_3, 3, 3, 1, 1, 256, "conv3_4")
- pool3 = maxPoolLayer(conv3_4, 2, 2, 2, 2, "pool3")
-
- conv4_1 = convLayer(pool3, 3, 3, 1, 1, 512, "conv4_1")
- conv4_2 = convLayer(conv4_1, 3, 3, 1, 1, 512, "conv4_2")
- conv4_3 = convLayer(conv4_2, 3, 3, 1, 1, 512, "conv4_3")
- conv4_4 = convLayer(conv4_3, 3, 3, 1, 1, 512, "conv4_4")
- pool4 = maxPoolLayer(conv4_4, 2, 2, 2, 2, "pool4")
-
- conv5_1 = convLayer(pool4, 3, 3, 1, 1, 512, "conv5_1")
- conv5_2 = convLayer(conv5_1, 3, 3, 1, 1, 512, "conv5_2")
- conv5_3 = convLayer(conv5_2, 3, 3, 1, 1, 512, "conv5_3")
- conv5_4 = convLayer(conv5_3, 3, 3, 1, 1, 512, "conv5_4")
- pool5 = maxPoolLayer(conv5_4, 2, 2, 2, 2, "pool5")
-
- fcIn = tf.reshape(pool5, [-1, 7*7*512])
- fc6 = fcLayer(fcIn, 7*7*512, 4096, True, "fc6")
- dropout1 = dropout(fc6, self.KEEPPRO)
-
- fc7 = fcLayer(dropout1, 4096, 4096, True, "fc7")
- dropout2 = dropout(fc7, self.KEEPPRO)
-
- self.fc8 = fcLayer(dropout2, 4096, self.CLASSNUM, True, "fc8")
-
- def loadModel(self, sess):
- """load model"""
- wDict = np.load(self.MODELPATH, encoding = "bytes").item()
- #for layers in model
- for name in wDict:
- if name not in self.SKIP:
- with tf.variable_scope(name, reuse = True):
- for p in wDict[name]:
- if len(p.shape) == 1:
- #bias 只有一维
- sess.run(tf.get_variable('b', trainable = False).assign(p))
- else:
- #weights
- sess.run(tf.get_variable('w', trainable = False).assign(p))

buildCNN函数完全按照VGG的结构搭建网络。
loadModel函数从模型文件中读取参数,采用的模型文件见github上的readme说明。 至此,我们定义了完整的模型,下面开始测试模型。
模型测试
ImageNet训练的VGG有很多类,几乎包含所有常见的物体,因此我们随便从网上找几张图片测试。比如我直接用了之前做项目的图片,为了避免审美疲劳,我们不只用渣土车,还要用挖掘机、采沙船:
然后编写测试代码:
- parser = argparse.ArgumentParser(description='Classify some images.')
- parser.add_argument('mode', choices=['folder', 'url'], default='folder')
- parser.add_argument('path', help='Specify a path [e.g. testModel]')
- args = parser.parse_args(sys.argv[1:])
-
- if args.mode == 'folder': #测试方式为本地文件夹
- #get testImage
- withPath = lambda f: '{}/{}'.format(args.path,f)
- testImg = dict((f,cv2.imread(withPath(f))) for f in os.listdir(args.path) if os.path.isfile(withPath(f)))
- elif args.mode == 'url': #测试方式为URL
- def url2img(url): #获取URL图像
- '''url to image'''
- resp = urllib.request.urlopen(url)
- image = np.asarray(bytearray(resp.read()), dtype="uint8")
- image = cv2.imdecode(image, cv2.IMREAD_COLOR)
- return image
- testImg = {args.path:url2img(args.path)}
-
- if testImg.values():
- #some params
- dropoutPro = 1
- classNum = 1000
- skip = []
-
- imgMean = np.array([104, 117, 124], np.float)
- x = tf.placeholder("float", [1, 224, 224, 3])
-
- model = vgg19.VGG19(x, dropoutPro, classNum, skip)
- score = model.fc8
- softmax = tf.nn.softmax(score)
-
- with tf.Session() as sess:
- sess.run(tf.global_variables_initializer())
- model.loadModel(sess) #加载模型
-
- for key,img in testImg.items():
- #img preprocess
- resized = cv2.resize(img.astype(np.float), (224, 224)) - imgMean #去均值
- maxx = np.argmax(sess.run(softmax, feed_dict = {x: resized.reshape((1, 224, 224, 3))})) #网络输入为224*224
- res = caffe_classes.class_names[maxx]
-
- font = cv2.FONT_HERSHEY_SIMPLEX
- cv2.putText(img, res, (int(img.shape[0]/3), int(img.shape[1]/3)), font, 1, (0, 255, 0), 2) #在图像上绘制结果
- print("{}: {}n----".format(key,res)) #输出测试结果
- cv2.imshow("demo", img)
- cv2.waitKey(0)

如果你看完了我AlexNet的博客,那么一定会发现我这里的测试代码做了一些小的修改,增加了URL测试的功能,可以测试网上的图像 ,测试结果如下:
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。