赞
踩
/1加载图片:加载数据集,没有的话会自动下载,数据分布在0附近,并打散。
训练集:测试集=6k:1k。
utils.py文件:plot_image()绘制loss下降曲线; plot_curve()显示图片通过plot_image()可视化结果。minst_train.py文件:读取Minst数据集
/2 加载模型:三层线性模型,前两层用ReLU函数,batch_size=512,一张图片28*28,Normalize将数据均匀分布。
/3 训练:学习率0.01,momentum = 0.9,loss定义,梯度清零、计算、更新,每10次显示loss,可以看到loss下降:
/4 测试
计算正确率并显示梯度下降:
遇到的问题:pytorch中优化器获得的是空参数表
ValueError:optimizer got an empty parameter list
解决:初始函数定义未正确,两个下划线
def __init__(self):
super(Net, self).__init__()
win10+anaconda3+python3.7,安装tensorflow、pytorch、opencv、CUDA10.2
mnist_train.py
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jan 14 15:10:20 2020
- @author: ZM
- """
- import torch
- from torch import nn
- from torch.nn import functional as F
- from torch import optim
-
- import torchvision
- from matplotlib import pyplot as plt
-
- from utils import plot_image, plot_curve, one_hot
-
- batch_size=512
- #step1:load dataset
- #加载数据集,没有的话会自动下载,数据分布在0附近,并打散
- train_loader=torch.utils.data.DataLoader(
- torchvision.datasets.MNIST('mnist_data',train=True,download=True,
- transform=torchvision.transforms.Compose([
- torchvision.transforms.ToTensor(),
- torchvision.transforms.Normalize(
- (0.1307,),(0.3081,))
- ])),
- batch_size=batch_size,shuffle=True)
-
- test_loader=torch.utils.data.DataLoader(
- torchvision.datasets.MNIST('mnist_data/',train=False,download=True,
- transform=torchvision.transforms.Compose([
- torchvision.transforms.ToTensor(),
- torchvision.transforms.Normalize(
- (0.1307,),(0.3081,))
- ])),
- batch_size=batch_size,shuffle=False)
-
- #显示:batch_size=512,一张图片28*28,Normalize将数据均匀
- x, y = next(iter(train_loader))
- print(x.shape,y.shape,x.min(),x.max())
- plot_image(x, y, 'image sample')
-
- #建立模型
- class Net(nn.Module):
-
- def __init__(self):
- super(Net, self).__init__()
-
- #wx+b
- self.fc1 = nn.Linear(28*28, 256)
- self.fc2 = nn.Linear(256, 64)
- self.fc3 = nn.Linear(64,10)
-
- def forward(self, x):
- #x:[b,1,28,28]
- #h1=relu(w1x+b1)
- x = F.relu(self.fc1(x))
- #h2=relu(h1w2+b2)
- x = F.relu(self.fc2(x))
- #h3=h2w3+b3
- x = self.fc3(x)
-
- return x
- # return F.log_softmax(x, dim=1)
- #训练
- net = Net()#初始化
- #返回[w1,b1,w2,b2,w3,b3]
- optimizer = optim.SGD(net.parameters(), lr=0.01, momentum = 0.9)
- train_loss = []
-
- for epoch in range(3):
- for batch_idx, (x,y) in enumerate(train_loader):
-
- # x[b,1,28,28] y:[512]
- # print(x.shape,y.shape)
- # break
- # x, y = Variable(x), Variable(y)
- #[b,1,28,28]=>[b,784]实际图片4维打平为二维
-
- x = x.view(x.size(0), 28*28)
- #[b,10]
- out = net(x)
- #[b,10]
- y_onehot = one_hot(y)
- #loss=mse(out,y_onehot)
- loss = F.mse_loss(out, y_onehot)
-
- optimizer.zero_grad()
- loss.backward()
- #w'=w-li*grad
- optimizer.step()
-
- #测试
- train_loss.append(loss.item())
- if batch_idx % 10==0:
- print(epoch, batch_idx, loss.item())
- plot_curve(train_loss)
- #达到较好的[w1,b1,w2,b2,w3,b3]
-
- total_correct=0
- for x,y in test_loader:
- x = x.view(x.size(0),28*28)
- #out:[b,10] => pred:[b]
- out = net(x)
-
- pred = out.argmax(dim = 1)
- correct = pred.eq(y).sum().float().item()
- total_correct += correct
-
- total_num = len(test_loader.dataset)
- acc = total_correct / total_num
- print('test acc:', acc)
-
- x,y = next(iter(test_loader))
- out = net(x.view(x.size(0),28*28))
- pred = out.argmax(dim = 1)
- plot_image(x, pred, 'test')

utils.py
- # -*- coding: utf-8 -*-
- """
- Created on Tue Jan 14 16:37:46 2020
- @author: ZM
- """
-
- import torch
- from matplotlib import pyplot as plt
-
- def plot_curve(data):
- fig = plt.figure()
- plt.plot(range(len(data)), data, color='blue')
- plt.legend(['value'], loc='upper right')
- plt.xlabel('step')
- plt.ylabel('value')
- plt.show()
-
- def plot_image(img, label, name):
- fig = plt.figure()
- for i in range(6):
- plt.subplot(2, 3, i+1)
- plt.tight_layout()
- plt.imshow(img[i][0]*0.3081+0.1307, cmap='gray', interpolation='none')
- plt.title("{}: {}".format(name, label[i].item()))
- plt.xticks([])
- plt.yticks([])
- plt.show()
-
- def one_hot(label, depth=10):
- out = torch.zeros(label.size(0), depth)
- idx = torch.LongTensor(label).view(-1,1)
- out.scatter_(dim=1, index=idx, value=1)
- return out

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。