赞
踩
官网教程:logistic-regression — scikit-learn 1.5.1 documentation
# 导入包
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data
y = iris.target
# 将数据划分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
# 创建逻辑回归模型实例
logistic_regression = LogisticRegression(max_iter=10, random_state=42)
# 预测测试集上的标签
y_pred = logistic_regression.predict(X_test)
# 输出预测准确率 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy:.4f}") # 输出详细的分类报告 report = classification_report(y_test, y_pred) print("Classification Report:") print(report) # 查看模型系数 coefficients = logistic_regression.coef_ print("Coefficients:") print(coefficients) # 查看截距 intercept = logistic_regression.intercept_ print("Intercept:") print(intercept)
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。