赞
踩
#scratch import torch from d2l import torch as d2l from torch import nn #load data set fashion_mnist batch_size = 128 # train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) #set parameters num_inputs, num_outputs, num_hiddens = 784, 10, 256 W1 = nn.Parameter(torch.randn( num_inputs, num_hiddens, requires_grad=True) * 0.01) b1 = nn.Parameter(torch.zeros(num_hiddens, requires_grad=True)) W2 = nn.Parameter(torch.randn( num_hiddens, num_outputs, requires_grad=True) * 0.01) b2 = nn.Parameter(torch.zeros(num_outputs, requires_grad=True)) parameters = [W1, b1, W2, b2] #set net one hidden def net(X): X = X.reshape((-1,num_inputs)) return torch.relu(X@W1 + b1)@W2 + b2 #set loss func loss = nn.CrossEntropyLoss(reduction="none") #train num_epochs, lr = 20, 0.1 updater = torch.optim.SGD(parameters, lr) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater) #test d2l.predict_ch3(net, test_iter)
训练
测试
#concise import torch from torch import nn from d2l import torch as d2l # use Sequential to define the net: Flatten,Linear,ReLU,Linear net = nn.Sequential(nn.Flatten(), nn.Linear(784, 256), nn.ReLU(), nn.Linear(256, 10)) # weight tensor to normal weight tensor def init_weights(m): # if m is nn.Linear, the tensor m.weight -> a normal tensor which mean=0,std=0.01 if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) # Fills the input Tensor with values drawn from the normal net.apply(init_weights) # define parameters batch_size, lr, num_epochs and loss, updater batch_size, lr, num_epochs = 128, 0.1, 10 loss = nn.CrossEntropyLoss(reduction='none') updater = torch.optim.SGD(net.parameters(), lr=lr) # load dataset and train train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size) d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, updater)
训练
教程链接d2l.ai
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。