赞
踩
原创不易
导包
import os
from osgeo import gdal
import cv2
import shutil
import skimage.io as io
from PIL import Image
Image.MAX_IMAGE_PIXELS = None
判断文件夹是否存在,存在就删除清空,不存在保留
if os.path.exists(self.dir_path):
shutil.rmtree(self.dir_path)
os.makedirs(self.dir_path)
else:
os.makedirs(self.dir_path)
检查输入和输出路径
class Image_pyramid: def __init__(self,inputfpath): self.inputtfpath=inputfpath//输入文件路劲 # print(self.inputtfpath) dir_list = self.inputtfpath.strip(' ').split('.')[0].split("/")[0:-1] print(dir_list) dir_list_pic=self.inputtfpath.strip(' ').split('.')[0].split("/")[-1] dir_path2="" for i in range(0,len(dir_list)): if len(dir_list[i])==0: continue else: dir_list2=str(os.path.join('/',str(dir_list[i]))) dir_path2=str(dir_path2)+dir_list2 self.dir_path=os.path.join(dir_path2,dir_list_pic) print(self.dir_path) if os.path.exists(self.dir_path): shutil.rmtree(self.dir_path) os.makedirs(self.dir_path) else: os.makedirs(self.dir_path) print(self.dir_path) self.outputtfpath = os.path.join(dir_path2,"10") print(self.outputtfpath)
生成新的tif图像的名称10.tif
def gdal_pymaid2(self):
if os.path.exists(self.outputtfpath):
shutil.rmtree(self.outputtfpath)
os.makedirs(self.outputtfpath)
else:
os.makedirs(self.outputtfpath)
outputfilename = os.path.join(self.outputtfpath, "10.tif")
print(333333333333333)
print(outputfilename)
获取tif图像的宽度和高度
inputDataset = gdal.Open(self.inputtfpath)
print(inputDataset==None)
inputBand = inputDataset.GetRasterBand(1)
img_arraytif = inputDataset.ReadAsArray(0, 0,
inputDataset.RasterXSize, inputDataset.RasterYSize)
获取原始卫星图像获取仿射矩阵信息,获取投影信息,创建tiff图像驱动,获取波段数量
im_geotrans = inputDataset.GetGeoTransform() # 获取仿射矩阵信息
im_proj = inputDataset.GetProjection() # 获取投影信息
driver = gdal.GetDriverByName("GTiff"),#创建tiff图像驱动
im_bands=int(inputDataset.RasterCount)#获取波段数量
print(im_bands)
将原始卫星图像的矩阵信息宽度信息,高度信息,反射变化矩阵,投影信息,等写入到新的tif图像中
if im_bands == 1:
datasets = driver.Create(outputfilename,int((inputDataset.RasterXSize)),
int((inputDataset.RasterYSize)), 1, inputBand.DataType)
datasets.SetGeoTransform(im_geotrans) # 写入仿射变换参数
datasets.SetProjection(im_proj) # 写入投影
else:
datasets = driver.Create(outputfilename, int((inputDataset.RasterXSize)), int((inputDataset.RasterYSize)), 3, inputBand.DataType)
datasets.SetGeoTransform(im_geotrans) # 写入仿射变换参数
datasets.SetProjection(im_proj) # 写入投影
卫星图像可能有一个波段,3个波段,甚至7个波段的信息,将每个波段的信息写入到对应的tif图像中,在这之前需要区分RGB通道,可以利用均值直方图信息,这里将图像一次缩小4倍,16倍,64倍…
if im_bands >= 3:
# for i in range(3):
datasets.GetRasterBand(1).WriteArray(img_arraytif[2])
datasets.GetRasterBand(2).WriteArray(img_arraytif[1])
datasets.GetRasterBand(3).WriteArray(img_arraytif[0])
for i in range(1, 4):
datasets.GetRasterBand(i).ComputeStatistics(False)
datasets.BuildOverviews('average', [1,2, 4, 8, 16, 32, 64])
else:
datasets.GetRasterBand(1).WriteArray(img_arraytif)
datasets.GetRasterBand(1).ComputeStatistics(False)
datasets.BuildOverviews('average', [1,2, 4, 8, 16, 32,64])
del datasets
def show_pymaid(self):
self.gdal_pymaid2()
outputfilename = os.path.join(self.outputtfpath, "10.tif")
读取新创建的卫星图像基本信息,获取概率图深度,即金字塔层数和波段数量
dataset = gdal.Open(outputfilename)
# print(dataset)
band = dataset.GetRasterBand(1)
overviewNum = band.GetOverviewCount()
print(dataset.RasterCount)
print(overviewNum)
im_bands = int(dataset.RasterCount)
不同波段的卫星图像,图像金字塔所对应的原始图像大小
if im_bands>1: rband = dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(6) r = roverviewBand.ReadAsArray() gband = dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(6) g = goverviewBand.ReadAsArray() bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(6) b = broverviewBand.ReadAsArray() data = cv2.merge([r, g, b])#正解 # data = cv2.merge([b, g, r]) print(data.shape) cv2.imwrite(f'{self.dir_path}/1.bmp', data) rband=dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(5) r = roverviewBand.ReadAsArray() gband=dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(5) g = goverviewBand.ReadAsArray() bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(5) b = broverviewBand.ReadAsArray() data=cv2.merge([r,g,b]) # data = cv2.merge([b, g, r]) print(data.shape) cv2.imwrite(f'{self.dir_path}/1.bmp',data) del data rband=dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(4) r = roverviewBand.ReadAsArray() gband=dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(4) g = goverviewBand.ReadAsArray() bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(4) b = broverviewBand.ReadAsArray() data=cv2.merge([r,g,b]) # data = cv2.merge([b, g, r]) print(data.shape) cv2.imwrite(f'{self.dir_path}/2.bmp',data) del data rband=dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(3) r = roverviewBand.ReadAsArray() gband=dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(3) g = goverviewBand.ReadAsArray() bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(3) b = broverviewBand.ReadAsArray() data=cv2.merge([r,g,b]) # data = cv2.merge([b, g, r]) print(data.shape) cv2.imwrite(f'{self.dir_path}/3.bmp',data) del data # rband=dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(2) r = roverviewBand.ReadAsArray() gband=dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(2) g = goverviewBand.ReadAsArray() bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(2) b = broverviewBand.ReadAsArray() data=cv2.merge([r,g,b]) # data = cv2.merge([b, g, r]) cv2.imwrite(f'{self.dir_path}/4.bmp',data) del data # # rband=dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(1) r = roverviewBand.ReadAsArray() gband=dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(1) g = goverviewBand.ReadAsArray() bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(1) b = broverviewBand.ReadAsArray() data=cv2.merge([r,g,b]) # data = cv2.merge([b, g, r]) print(data.shape) cv2.imwrite(f'{self.dir_path}/5.bmp',data) del data rband=dataset.GetRasterBand(3) roverviewBand = rband.GetOverview(0) r = roverviewBand.ReadAsArray() gband=dataset.GetRasterBand(2) goverviewBand = gband.GetOverview(0) g = goverviewBand.ReadAsArray() bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(0) b = broverviewBand.ReadAsArray() import numpy as np data=cv2.merge([r,g,b]) # data = cv2.merge([b, g, r]) print(data.shape) # io.imsave(f'{self.dir_path}/6.bmp',data) cv2.imwrite(f'{self.dir_path}/6.bmp',data) del data else: bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(6) b = broverviewBand.ReadAsArray() data = cv2.merge([b, b, b]) cv2.imwrite(f'{self.dir_path}/1.bmp', data) del data bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(5) b = broverviewBand.ReadAsArray() data = cv2.merge([b, b, b]) cv2.imwrite(f'{self.dir_path}/1.bmp',data) del data bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(4) b = broverviewBand.ReadAsArray() data = cv2.merge([b, b, b]) print(data.shape) cv2.imwrite(f'{self.dir_path}/2.bmp',data) del data bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(3) b = broverviewBand.ReadAsArray() data = cv2.merge([b, b, b]) cv2.imwrite(f'{self.dir_path}/3.bmp',data) del data bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(2) b = broverviewBand.ReadAsArray() data = cv2.merge([b, b, b]) cv2.imwrite(f'{self.dir_path}/4.bmp',data) del data bband = dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(1) b = broverviewBand.ReadAsArray() data = cv2.merge([b, b, b]) cv2.imwrite(f'{self.dir_path}/5.bmp',data) del data bband=dataset.GetRasterBand(1) broverviewBand = bband.GetOverview(0) b = broverviewBand.ReadAsArray() data=cv2.merge([b,b,b]) print(data.shape) cv2.imwrite(f'{self.dir_path}/6.bmp',data) # del data
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。