当前位置:   article > 正文

TraPHic: Trajectory Prediction in Dense and Heterogeneous Traffic Using Weighted Interactions

traphic: trajectory prediction in dense and heterogeneous traffic using weig

论文与代码链接

文章大致内容:提出一种LSTM-CNN混合网络对密集交通流场景进行轨迹预测,考虑了场景中车辆的交互作用。
在这里插入图片描述

效果:在高密度环境优于S-LSTM、S-GAN、CS-LSTM;在稀疏交通流环境,具有相似精度。

数据集:ApolloScape(街景数据,高复杂场景,2D/3D注释);NGSIM(单一交通流,高速公路);KITTI(带有2D/3D注释);TRAF(密集和异构交通,2D/3D轨迹信息)
在这里插入图片描述
网络结构组成:包括三层网络,Horizon层(输入:预测的车前视角半椭圆区域代理车辆位置、速度、流量集中度、尺寸)、Neighbor层(输入:预测的车360度椭圆区域代理车辆的位置、速度、流量集中度、尺寸)、Ego层(输入:预测的车自身的位置、速度、流量集中度、尺寸、转角半径、形状等等);经过网络得到特征向量;最后级联在一起进行轨迹预测

权重分配:蓝色区域分配较大权重(优先避障)
在这里插入图片描述

损失函数如下:
在这里插入图片描述
评估结果
在这里插入图片描述

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/喵喵爱编程/article/detail/939005
推荐阅读
相关标签
  

闽ICP备14008679号