当前位置:   article > 正文

Spark jdbc(mysql) 读取并发度优化_data.write.jdbc 调并发

data.write.jdbc 调并发

  在Spark中使用默认提供的jdbc方法时,在数据库数据较大时经常发现任务 hang 住,其实是单线程任务过重导致,这时候需要提高读取的并发度。

单partition(无并发)

调用函数

def jdbc(url: String, table: String, properties: Properties): DataFrame
  • 1

使用:

val url = "jdbc:mysql://mysqlHost:3306/database"
val tableName = "table"

// 设置连接用户&密码
val prop = new java.util.Properties
prop.setProperty("user","username")
prop.setProperty("password","pwd")

// 取得该表数据
val jdbcDF = sqlContext.read.jdbc(url,tableName,prop)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/725054
推荐阅读
相关标签
  

闽ICP备14008679号