赞
踩
汉字检测、字母检测、手写数字检测、藏文检测、甲骨文检测在我之前的文章中都有做过了,今天主要是因为实际项目的需要,之前的汉字检测模型较为古老了还使用的yolov3时期的模型,检测精度和推理速度都有不小的滞后了,这里要基于yolov5轻量级的模型来开发构建新版的目标检测模型,首先看下效果图:
接下来简单看下数据集情况:
YOLO格式标注文件截图如下:
实例标注内容如下所示:
- 17 0.245192 0.617788 0.038462 0.038462
- 6 0.102163 0.830529 0.045673 0.045673
- 16 0.894231 0.096154 0.134615 0.134615
- 4 0.456731 0.524038 0.134615 0.134615
- 15 0.367788 0.317308 0.269231 0.269231
VOC格式数据标注文件截图如下:
实例标注内容如下所示:
- <annotation>
- <folder>DATASET</folder>
- <filename>0ace8eaf-8e86-488b-9229-95255c69158c.jpg</filename>
- <source>
- <database>The DATASET Database</database>
- <annotation>DATASET</annotation>
- <image>DATASET</image>
- </source>
- <owner>
- <name>YMGZS</name>
- </owner>
- <size>
- <width>416</width>
- <height>416</height>
- <depth>3</depth>
- </size>
- <segmented>0</segmented>
-
- <object>
- <name>17</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>214</xmin>
- <ymin>302</ymin>
- <xmax>230</xmax>
- <ymax>318</ymax>
- </bndbox>
- </object>
-
- <object>
- <name>16</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>210</xmin>
- <ymin>67</ymin>
- <xmax>229</xmax>
- <ymax>86</ymax>
- </bndbox>
- </object>
-
- <object>
- <name>18</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>260</xmin>
- <ymin>7</ymin>
- <xmax>274</xmax>
- <ymax>21</ymax>
- </bndbox>
- </object>
-
- <object>
- <name>10</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>121</xmin>
- <ymin>103</ymin>
- <xmax>143</xmax>
- <ymax>125</ymax>
- </bndbox>
- </object>
-
- <object>
- <name>11</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>296</xmin>
- <ymin>289</ymin>
- <xmax>352</xmax>
- <ymax>345</ymax>
- </bndbox>
- </object>
-
- <object>
- <name>0</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>56</xmin>
- <ymin>132</ymin>
- <xmax>196</xmax>
- <ymax>272</ymax>
- </bndbox>
- </object>
-
- <object>
- <name>0</name>
- <pose>Unspecified</pose>
- <truncated>0</truncated>
- <difficult>0</difficult>
- <bndbox>
- <xmin>213</xmin>
- <ymin>142</ymin>
- <xmax>353</xmax>
- <ymax>282</ymax>
- </bndbox>
- </object>
-
- </annotation>
因为是主打轻量级网络,这里选择了也是最为轻量级的n系列的模型,最终训练得到的模型文件不足4MB大小,网络结构图如下所示:
默认100次epoch的计算,结果目录如下所示:
【混淆矩阵】
【F1值曲线】
【PR曲线】
【训练日志可视化】
【batch计算实例】
可视化界面推理样例如下:
从评估指标结果上面来看检测效果还是很不错的。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。