赞
踩
pip install PyQt5
Ubuntu下opencv4.4 带CUDA的编译安装_学术菜鸟小晨的博客-CSDN博客
darknet下yolov4训练自己的数据集及其调参规则快速教程_学术菜鸟小晨的博客-CSDN博客_yolov4调参
训练集:标注的是每个字符,我们将其分为70个类,分别为:"plate", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "澳","川","鄂","甘","赣","港","贵","桂","黑","沪","吉","冀","津","晋","京","警","辽","鲁","蒙","闽","宁","青","琼","陕","苏","皖","湘","新","学","渝","豫","粤","云","浙","藏"。
将数据集放入下面文件夹中:
通过makeTxt.py
- import os
- import random
-
- trainval_percent = 0.1
- train_percent = 0.9
- xmlfilepath = './VOC2008/Annotations'
- txtsavepath = './VOC2008/ImageSets'
- total_xml = os.listdir(xmlfilepath)
-
- num = len(total_xml)
- list = range(num)
- tv = int(num * trainval_percent)
- tr = int(tv * train_percent)
- trainval = random.sample(list, tv)
- train = random.sample(trainval, tr)
-
- ftrainval = open('./VOC2008/ImageSets/trainval.txt', 'w')
- ftest = open('./VOC2008/ImageSets/test.txt', 'w')
- ftrain = open('./VOC2008/ImageSets/train.txt', 'w')
- fval = open('./VOC2008/ImageSets/val.txt', 'w')
-
- for i in list:
- name = total_xml[i][:-4] + '\n'
- if i in trainval:
- ftrainval.write(name)
- if i in train:
- ftest.write(name)
- else:
- fval.write(name)
- else:
- ftrain.write(name)
-
- ftrainval.close()
- ftrain.close()
- fval.close()
- ftest.close()
和 voc_label.py
- import xml.etree.ElementTree as ET
- import pickle
- import os
- from os import listdir, getcwd
- from os.path import join
-
- sets=[('2008', 'train'), ('2008', 'test'),('2008', 'val')]
-
- classes = ["plate", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
- "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L",
- "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
- "Y", "Z", "澳","川","鄂","甘","赣","港","贵","桂","黑","沪","吉","冀","津","晋","京","警","辽","鲁","蒙","闽","宁","青","琼","陕","苏","皖","湘","新","学","渝","豫","粤","云","浙","藏"]
- #找到英文label名称在list中的位置
-
-
- def convert(size, box):
- dw = 1./(size[0])
- dh = 1./(size[1])
- x = (box[0] + box[1])/2.0 - 1
- y = (box[2] + box[3])/2.0 - 1
- w = box[1] - box[0]
- h = box[3] - box[2]
- x = x*dw
- w = w*dw
- y = y*dh
- h = h*dh
- return (x,y,w,h)
-
- def convert_annotation(year, image_id):
- in_file = open('VOC%s/Annotations/%s.xml'%(year, image_id))
- out_file = open('VOC%s/labels/%s.txt'%(year, image_id), 'w')
- tree=ET.parse(in_file)
- root = tree.getroot()
- size = root.find('size')
- w = int(size.find('width').text)
- h = int(size.find('height').text)
-
- for obj in root.iter('object'):
- # difficult = obj.find('difficult').text
- cls = obj.find('name').text
- # if cls not in classes or int(difficult)==1:
-
- if cls not in classes:
- continue
- cls_id = classes.index(cls)
- xmlbox = obj.find('bndbox')
- b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
- bb = convert((w,h), b)
- out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
-
- wd = getcwd()
-
- for year, image_set in sets:
- if not os.path.exists('VOC%s/labels/'%(year)):
- os.makedirs('VOC%s/labels/'%(year))
- image_ids = open('VOC%s/ImageSets/%s.txt'%(year, image_set)).read().strip().split()
- list_file = open('%s_%s.txt'%(year, image_set), 'w')
- for image_id in image_ids:
- list_file.write('%s/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
- convert_annotation(year, image_id)
- list_file.close()
-
- os.system("cat 2008_train.txt 2008_val.txt > train.txt")
- #os.system("cat 2008_train.txt 2008_val.txt 2008_test.txt> train.txt")
-
- #os.system("cat 2014_train.txt 2014_val.txt 2012_train.txt 2012_val.txt > train.txt")
- #os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")
参考上一步3中的训练规则训练,也可以加入自己的数据,优化检测结果。
将训练好的模型放入下面文件夹中
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。