当前位置:   article > 正文

pyqt5 yolov4实现车牌识别系统_yolo4车牌

yolo4车牌

一、pyqt5界面展示: 可支持图片和视频实时检测识别

 1.对图片识别效果:

 

2. 对视频的识别:

二、环境配置

1.安装pyqt5

pip install PyQt5

2.安装opencv

Ubuntu下opencv4.4 带CUDA的编译安装_学术菜鸟小晨的博客-CSDN博客

3.yolov4的下载和编译(其他检测算法也可)

darknet下yolov4训练自己的数据集及其调参规则快速教程_学术菜鸟小晨的博客-CSDN博客_yolov4调参

三、训练

训练集:标注的是每个字符,我们将其分为70个类,分别为:"plate", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z", "澳","川","鄂","甘","赣","港","贵","桂","黑","沪","吉","冀","津","晋","京","警","辽","鲁","蒙","闽","宁","青","琼","陕","苏","皖","湘","新","学","渝","豫","粤","云","浙","藏"。

将数据集放入下面文件夹中:

 

 通过makeTxt.py

  1. import os
  2. import random
  3. trainval_percent = 0.1
  4. train_percent = 0.9
  5. xmlfilepath = './VOC2008/Annotations'
  6. txtsavepath = './VOC2008/ImageSets'
  7. total_xml = os.listdir(xmlfilepath)
  8. num = len(total_xml)
  9. list = range(num)
  10. tv = int(num * trainval_percent)
  11. tr = int(tv * train_percent)
  12. trainval = random.sample(list, tv)
  13. train = random.sample(trainval, tr)
  14. ftrainval = open('./VOC2008/ImageSets/trainval.txt', 'w')
  15. ftest = open('./VOC2008/ImageSets/test.txt', 'w')
  16. ftrain = open('./VOC2008/ImageSets/train.txt', 'w')
  17. fval = open('./VOC2008/ImageSets/val.txt', 'w')
  18. for i in list:
  19. name = total_xml[i][:-4] + '\n'
  20. if i in trainval:
  21. ftrainval.write(name)
  22. if i in train:
  23. ftest.write(name)
  24. else:
  25. fval.write(name)
  26. else:
  27. ftrain.write(name)
  28. ftrainval.close()
  29. ftrain.close()
  30. fval.close()
  31. ftest.close()

和 voc_label.py

  1. import xml.etree.ElementTree as ET
  2. import pickle
  3. import os
  4. from os import listdir, getcwd
  5. from os.path import join
  6. sets=[('2008', 'train'), ('2008', 'test'),('2008', 'val')]
  7. classes = ["plate", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9",
  8. "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L",
  9. "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X",
  10. "Y", "Z", "澳","川","鄂","甘","赣","港","贵","桂","黑","沪","吉","冀","津","晋","京","警","辽","鲁","蒙","闽","宁","青","琼","陕","苏","皖","湘","新","学","渝","豫","粤","云","浙","藏"]
  11. #找到英文label名称在list中的位置
  12. def convert(size, box):
  13. dw = 1./(size[0])
  14. dh = 1./(size[1])
  15. x = (box[0] + box[1])/2.0 - 1
  16. y = (box[2] + box[3])/2.0 - 1
  17. w = box[1] - box[0]
  18. h = box[3] - box[2]
  19. x = x*dw
  20. w = w*dw
  21. y = y*dh
  22. h = h*dh
  23. return (x,y,w,h)
  24. def convert_annotation(year, image_id):
  25. in_file = open('VOC%s/Annotations/%s.xml'%(year, image_id))
  26. out_file = open('VOC%s/labels/%s.txt'%(year, image_id), 'w')
  27. tree=ET.parse(in_file)
  28. root = tree.getroot()
  29. size = root.find('size')
  30. w = int(size.find('width').text)
  31. h = int(size.find('height').text)
  32. for obj in root.iter('object'):
  33. # difficult = obj.find('difficult').text
  34. cls = obj.find('name').text
  35. # if cls not in classes or int(difficult)==1:
  36. if cls not in classes:
  37. continue
  38. cls_id = classes.index(cls)
  39. xmlbox = obj.find('bndbox')
  40. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
  41. bb = convert((w,h), b)
  42. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
  43. wd = getcwd()
  44. for year, image_set in sets:
  45. if not os.path.exists('VOC%s/labels/'%(year)):
  46. os.makedirs('VOC%s/labels/'%(year))
  47. image_ids = open('VOC%s/ImageSets/%s.txt'%(year, image_set)).read().strip().split()
  48. list_file = open('%s_%s.txt'%(year, image_set), 'w')
  49. for image_id in image_ids:
  50. list_file.write('%s/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
  51. convert_annotation(year, image_id)
  52. list_file.close()
  53. os.system("cat 2008_train.txt 2008_val.txt > train.txt")
  54. #os.system("cat 2008_train.txt 2008_val.txt 2008_test.txt> train.txt")
  55. #os.system("cat 2014_train.txt 2014_val.txt 2012_train.txt 2012_val.txt > train.txt")
  56. #os.system("cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt > train.all.txt")

 参考上一步3中的训练规则训练,也可以加入自己的数据,优化检测结果。

将训练好的模型放入下面文件夹中

 

车牌数据集和pyqt5车牌识别系统完整代码分享:车牌识别数据集+pyqt5车牌识别系统代码-深度学习文档类资源-CSDN下载

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/372969
推荐阅读
相关标签
  

闽ICP备14008679号