当前位置:   article > 正文

lda 可以处理中文_中文分词(jieba)和语料库制作(gensim)

lda jieba分词

bb0d7fe1ab55b7b6a5fa9710417bd51d.png

本文的内容为以下两个部分:

  1. 文本分词(jieba)
  2. 语料库制作(gensim)

结巴(jieba)分词

自然语言处理领域中,分词和提取关键词都是对文本处理时通常要进行的步骤。用Python语言对英文文本进行预处理时可选择NLTK库,中文文本预处理可选择jieba库。结巴分词是基于统计的分词方法,它对给出大量已经分词的文本,利用统计机器学习模型学习词语切分的规律(称为训练),从而实现对未知文本的切分。例如最大概率分词方法和最大熵分词方法等。随着大规模语料库的建立,统计机器学习方法的研究和发展,基于统计的中文分词方法渐渐成为了主流方法。

jieba分词的三种模式:

  • 精确模式:将句子最精确的分开,适合文本分析
  • 全模式:句子中所有可以成词的词语都扫描出来,速度快,不能解决歧义
  • 搜索引擎模式:在精确的基础上,对长词再次切分,提高召回

结巴分词的其他特点诸如:支持繁体分词,支持自定义词典,基于Trie树结构实现高效的词图扫描,采用了动态规划查找最大概率路径等特点。

jieba库中分词函数

1、jieba.cut

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/凡人多烦事01/article/detail/281543
推荐阅读
  

闽ICP备14008679号