赞
踩
import cv2 import time ''' 基于opencv和QT的瞳孔精确检测程序 https://blog.csdn.net/zyx1990412/article/details/51219076 基于QT和opencv的瞳孔定位及跟踪程序 https://blog.csdn.net/zyx1990412/article/details/51254127 ''' def eyeDetect(): #eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml') #lefteye_cascade =cv2.CascadeClassifier('/home/hx-104b/眼动追踪/haarcascade_lefteye_2splits.xml') camera = cv2.VideoCapture(0) while (True): stime = time.time() ret, frame = camera.read() if ret: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #gray1 = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #得到位置信息x,y,w,h eyes = eye_cascade.detectMultiScale(gray, 1.1, 8, 0 , (30, 30)) face = face_cascade.detectMultiScale(gray, 1.1, 5, 0 , (40, 40)) #3. double scaleFactor=1.1:这个是每次缩小图像的比例,默认是1.1 # 4. minNeighbors=3:匹配成功所需要的周围矩形框的数目,每一个特征匹配到的区域都是一个矩形框,只有多个矩形框同时存在的时候,才认为是匹配成功,比如人脸,这个默认值是3。 # 5. flags=0:可以取如下这些值: # CASCADE_DO_CANNY_PRUNING=1, 利用canny边缘检测来排除一些边缘很少或者很多的图像区域 # CASCADE_SCALE_IMAGE=2, 正常比例检测 # CASCADE_FIND_BIGGEST_OBJECT=4, 只检测最大的物体 # CASCADE_DO_ROUGH_SEARCH=8 初略的检测 # 6. minObjectSize maxObjectSize:匹配物体的大小范围 print (eyes) for (ex, ey, ew, eh) in eyes: cv2.rectangle(frame, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2) for (ex, ey, ew, eh) in face: cv2.rectangle(frame, (ex, ey), (ex+ew, ey+eh), (0, 0, 255), 2) cv2.imshow('VideoFaceDetect', frame) #print ("{:.1f} fps".format(1/(time.time()-stime))) k = cv2.waitKey(1) if k == ord("q"): break camera.release() cv2.destroyAllWindows() if __name__ == '__main__': eyeDetect()
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。