当前位置:   article > 正文

基于BosonNLP情感分析

bosonnlp
  1. # -*- coding:utf-8 -*-
  2. import pandas as pd
  3. import jieba
  4. #基于波森情感词典计算情感值
  5. def getscore(text):
  6. df = pd.read_table(r"BosonNLP_dict\BosonNLP_sentiment_score.txt", sep=" ", names=['key', 'score'])
  7. key = df['key'].values.tolist()
  8. score = df['score'].values.tolist()
  9. # jieba分词
  10. segs = jieba.lcut(text,cut_all = False) #返回list
  11. # 计算得分
  12. score_list = [score[key.index(x)] for x in segs if(x in key)]
  13. return sum(score_list)
  14. #读取文件
  15. def read_txt(filename):
  16. with open(filename,'r',encoding='utf-8')as f:
  17. txt = f.read()
  18. return txt
  19. #写入文件
  20. def write_data(filename,data):
  21. with open(filename,'a',encoding='utf-8')as f:
  22. f.write(data)
  23. if __name__=='__main__':
  24. text = read_txt('test_data\微博.txt')
  25. lists = text.split('\n')
  26. # al_senti = ['无','积极','消极','消极','中性','消极','积极','消极','积极','积极','积极',
  27. # '无','积极','积极','中性','积极','消极','积极','消极','积极','消极','积极',
  28. # '无','中性','消极','中性','消极','积极','消极','消极','消极','消极','积极'
  29. # ]
  30. al_senti = read_txt(r'test_data\人工情感标注.txt').split('\n')
  31. i = 0
  32. for list in lists:
  33. if list != '':
  34. # print(list)
  35. sentiments = round(getscore(list),2)
  36. #情感值为正数,表示积极;为负数表示消极
  37. print(list)
  38. print("情感值:",sentiments)
  39. print('人工标注情感倾向:'+al_senti[i])
  40. if sentiments > 0:
  41. print("机器标注情感倾向:积极\n")
  42. s = "机器判断情感倾向:积极\n"
  43. else:
  44. print('机器标注情感倾向:消极\n')
  45. s = "机器判断情感倾向:消极"+'\n'
  46. sentiment = '情感值:'+str(sentiments)+'\n'
  47. al_sentiment= '人工标注情感倾向:'+al_senti[i]+'\n'
  48. #文件写入
  49. filename = 'result_data\BosonNLP情感分析结果.txt'
  50. write_data(filename,'情感分析文本:')
  51. write_data(filename,list+'\n') #写入待处理文本
  52. write_data(filename,sentiment) #写入情感值
  53. write_data(filename,al_sentiment) #写入机器判断情感倾向
  54. write_data(filename,s+'\n') #写入人工标注情感
  55. i = i+1

 

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/从前慢现在也慢/article/detail/750177?site
推荐阅读
相关标签
  

闽ICP备14008679号