赞
踩
在上一篇我们提到了网络流算法Push-relabel,那是90年代提出的算法,算是比较新的,而现在要说的Dinic算法则是由以色列人Dinitz在冷战时期,即60-70年代提出的算法变种而来的,其算法复杂度为O(mn^2)。
Dinic算法主要思想也是基于FF算法的,改进的地方也是减少寻找增广路径的迭代次数。此处Dinitz大师引用了一个非常聪明的数据结构,Layer Network,分层网络,该结构是由BFS tree启发得到的,它跟BFS tree的区别在于,BFS tree只保存到每一层的一条边,这样就导致了利用BFS tree一次只能发现一条增广路径,而分层网络保存了到每一层的所有边,但层内的边不保存。
介绍完数据结构,开始讲算法的步骤了,1)从网络的剩余图中利用BFS宽度优先遍历技术生成分层网络。2)在分层网络中不断调用DFS生成增广路径,直到s不可到达t,这一步体现了Dinic算法贪心的特性。3)max_flow+=这次生成的所有增广路径的flow,重新生成剩余图,转1)。
源代码如下:
采用递归实现BFS和DFS,效率不高。
- __author__ = 'xanxus'
- nodeNum, edgeNum = 0, 0
- arcs = []
-
-
- class Arc(object):
- def __init__(self):
- self.src = -1
- self.dst = -1
- self.cap = -1
-
-
- class Layer(object):
- def __init__(self):
- self.nodeSet = set()
- self.arcList = []
-
-
- s, t = -1, -1
- with open('demo.dimacs') as f:
- for line in f.readlines():
- line = line.strip()
- if line.startswith('p'):
- tokens = line.split(' ')
- nodeNum = int(tokens[2])
- edgeNum = tokens[3]
- if line.startswith('n'):
- tokens = line.split(' ')
- if tokens[2] == 's':
- s = int(tokens[1])
- if tokens[2] == 't':
- t = int(tokens[1])
- if line.startswith('a'):
- tokens = line.split(' ')
- arc = Arc()
- arc.src = int(tokens[1])
- arc.dst = int(tokens[2])
- arc.cap = int(tokens[3])
- arcs.append(arc)
-
- nodes = [-1] * nodeNum
- for i in range(s, t + 1):
- nodes[i - s] = i
- adjacent_matrix = [[0 for i in range(nodeNum)] for j in range(nodeNum)]
- for arc in arcs:
- adjacent_matrix[arc.src - s][arc.dst - s] = arc.cap
-
-
- def getLayerNetwork(current, ln, augment_set):
- if t - s in ln[current].nodeSet:
- return
- for i in ln[current].nodeSet:
- augment_set.add(i)
- has_augment = False
- for j in range(len(adjacent_matrix)):
- if adjacent_matrix[i][j] != 0:
- if len(ln) == current + 1:
- ln.append(Layer())
- if j not in augment_set and j not in ln[current].nodeSet:
- has_augment = True
- ln[current + 1].nodeSet.add(j)
- arc = Arc()
- arc.src, arc.dst, arc.cap = i, j, adjacent_matrix[i][j]
- ln[current].arcList.append(arc)
- if not has_augment and (i != t - s or i != 0):
- augment_set.remove(i)
- filter(lambda x: x == i, ln[current].nodeSet)
- newArcList = []
- for arc in ln[current - 1].arcList:
- if arc.dst != i:
- newArcList.append(arc)
- ln[current - 1].arcList = newArcList
- if len(ln) == current + 1:
- return
- getLayerNetwork(current + 1, ln, augment_set)
-
-
- def get_path(layerNetwork, src, current, path):
- for arc in layerNetwork[current].arcList:
- if arc.src == src and arc.cap != 0:
- path.append(arc)
- get_path(layerNetwork, arc.dst, current + 1, path)
- return
-
-
- def find_blocking_flow(layerNetwork):
- sum_flow = 0
- while (True):
- path = []
- get_path(layerNetwork, 0, 0, path)
- if path[-1].dst != t - s:
- break
- else:
- bottleneck = min([arc.cap for arc in path])
- for arc in path:
- arc.cap -= bottleneck
- sum_flow += bottleneck
- return sum_flow
-
-
- max_flow = 0
- while (True):
- layerNetwork = []
- firstLayer = Layer()
- firstLayer.nodeSet.add(0)
- layerNetwork.append(firstLayer)
- augment_set = set()
- augment_set.add(0)
-
- getLayerNetwork(0, layerNetwork, augment_set)
- if t - s not in layerNetwork[-1].nodeSet:
- break
- current_flow = find_blocking_flow(layerNetwork)
- if current_flow == 0:
- break
- else:
- max_flow += current_flow
- # add the backward arcs
- for layer in layerNetwork:
- for arc in layer.arcList:
- adjacent_matrix[arc.dst][arc.src] += adjacent_matrix[arc.src][arc.dst] - arc.cap
- adjacent_matrix[arc.src][arc.dst] = arc.cap
- for arc in arcs:
- print 'f %d %d %d' % (arc.src, arc.dst, arc.cap - adjacent_matrix[arc.src - s][arc.dst - s])

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。