赞
踩
先理解,一个矩阵乘以它自己的转置,是在计算第一个行向量与自己的内积,表征两个向量的夹角,表征一个向量在另一个向量上的投影
投影的值大,说明两个向量相关度高。
矩阵是一个方阵,我们以行向量的角度理解,里面保存了每个向量与自己和其他向量进行内积运算的结果。
Softmax之后,这些数字的和为1了
之后再乘X矩阵
这个新的行向量就是"早"字词向量经过注意力机制加权求和之后的表示。
对于QKV矩阵,其实都是X矩阵的线性表示,采用W矩阵,是为了提高矩阵的拟合能力。
对于,是为了使方差变为1,使得模型稳定。
首先和self-attention一样,将a分成QKV,之后根据头数,将QKV均分
接着将每个head得到的结果进行concat拼接
接着将拼接后的结果与W融合
代码实现如下
- class Attention(nn.Module):
- def __init__(self,
- dim, # 输入token的dim
- num_heads=8,
- qkv_bias=False,
- qk_scale=None,
- attn_drop_ratio=0.,
- proj_drop_ratio=0.):
- super(Attention, self).__init__()
- self.num_heads = num_heads
- head_dim = dim // num_heads
- self.scale = qk_scale or head_dim ** -0.5
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
- self.attn_drop = nn.Dropout(attn_drop_ratio)
- self.proj = nn.Linear(dim, dim)
- self.proj_drop = nn.Dropout(proj_drop_ratio)
-
- def forward(self, x):
- # [batch_size, num_patches + 1, total_embed_dim]
- B, N, C = x.shape
-
- # qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]
- # reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]
- # permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]
- qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
- # [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
-
- # transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]
- # @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]
- attn = (q @ k.transpose(-2, -1)) * self.scale
- attn = attn.softmax(dim=-1)
- attn = self.attn_drop(attn)
-
- # @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]
- # transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]
- # reshape: -> [batch_size, num_patches + 1, total_embed_dim]
- x = (attn @ v).transpose(1, 2).reshape(B, N, C)
- x = self.proj(x)
- x = self.proj_drop(x)
- return x
将图片划分成一堆Patches
将输入图片(224x224)按照16x16大小的Patch进行划分,划分后会得到(224/16)^2 = 196个patch,每个patch的shape的大小则为【16,16,3】,之后将其拉成16*16*3=768的向量(token)
代码实现如下
- class PatchEmbed(nn.Module):
- """
- 2D Image to Patch Embedding
- """
- def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768):
- super().__init__()
- img_size = (img_size, img_size)
- patch_size = (patch_size, patch_size)
- self.img_size = img_size
- self.patch_size = patch_size
- #224/16=14,224/16=14
- self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
- #14*14=196
- self.num_patches = self.grid_size[0] * self.grid_size[1]
-
- self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)
-
- def forward(self, x):
- B, C, H, W = x.shap
- # flatten: [B, C, H, W] -> [B, C, HW] B*768*196
- # transpose: [B, C, HW] -> [B, HW, C] B*196*768
- x = self.proj(x).flatten(2).transpose(1, 2)
- x = self.norm(x)
- return x
在Embedding层后,需增加一个Positional Encoding【196,768】->【197,768】
- # 定义一个可学习的Class token
- self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # 第一个1为batch_size embed_dim=768
- cls_token = self.cls_token.expand(x.shape[0], -1, -1) # 保证cls_token的batch维度和x一致
- if self.dist_token is None:
- x = torch.cat((cls_token, x), dim=1) # [B, 197, 768] self.dist_token为None,会执行这句
- else:
- x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)
-
之后再加上一个位置编码
- # 定义一个可学习的位置编码
- self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) #这个维度为(1,197,768)
- x = x + self.pos_embed
其实就是重复堆叠Encoder Block L次
从【197,768】中取出【1,768】,然后进行分类
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。