当前位置:   article > 正文

揭秘 CVPR 2024 Workshop 新兴技术与研究方向(下)

cutie: putting the object back into video object segmentation

关注公众号,发现CV技术之美

a96aa3f922d103b22a6cb445881f8eb3.jpeg

美国华盛顿州西雅图

本文汇总了 CVPR 2024 所有的研讨会(下篇),会议中既有延续举办的经典研讨会,也有首次举办的全新研讨会。大部分研讨会的论文征稿已经截止,部分接收的论文也已经公布,欢迎感兴趣的伙伴先行查阅。

另外,CVPR 2024 收录论文已更新在 Github 库,欢迎 star ⭐。

  • Github:https://github.com/52CV/CVPR-2024-Papers

1.Generative Models

2nd Workshop on Generative Models for Computer Vision

  • 项目主页:https://generative-vision.github.io/workshop-CVPR-24/

研讨会聚焦于图像合成和计算机视觉交叉领域所面临的挑战和机遇,探讨相关技术和应用问题。

6c3aa88fad7d2bc4c0d06b905f8a397a.png

接收长篇论文:TBD

接收短篇论文:

  • As-Plausible-As-Possible: Plausibility-Aware Mesh Deformation Using 2D Diffusion Priors

  • Generative AI in Vision: A Survey on Models, Metrics and Applications

  • Robustness of Generative Models using Language Guidance for Low-Level Vision Tasks: Findings from Depth Estimation

  • Intrinsic LoRA: A Generalist Approach for Discovering Knowledge in Generative Models

  • GL-NeRF: Gauss-Laguerre Quadrature for Volume Rendering

  • Synthesizing Image with High-Quality Segmentation Mask by Prompting Large Vision Model

  • Robust Disaster Assessment from Aerial Imagery Using Text-to-Image Synthetic Data

  • Posterior Distillation Sampling

  • Learning Compositional Language-based Object Detection with Diffusion-based Synthetic Data

  • KOALA: Fast and Memory-Efficient Latent Diffusion Models via Self-Attention Distillation

  • Turns Out I'm Not Real: Towards Robust Detection of AI-Generated Videos

  • Diffusion Models for Open-Vocabulary Segmentation

  • ExtraNeRF: Visibility-Aware View Extrapolation of Neural Radiance Fields with Diffusion Models

  • Do Counterfactual Examples Complicate Adversarial Training?

  • CAT: Contrastive Adapter Training for Personalized Image Generation

  • ZoomLDM: Latent Diffusion Model for multi-scale conditional histopathology image generation

  • Causal Diffusion Autoencoders: Toward Representation-Enabled Counterfactual Generation via Diffusion Probabilistic Models

  • Spatially Composable Diffusion

  • Learning Multimodal Latent Space with EBM Prior and MCMC Inference

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/不正经/article/detail/731634

推荐阅读
相关标签