赞
踩
目录
在日常的刷题或开发中,很多时候我们需要对数据进行排序,以达到我们的预期效果的作用。那么这些排序方法具体怎么实现和使用呢?本文就来好好缕一缕,总结一下这些方法:
当我们对类中的对象进行比较时,要保证对象时可比较的,这时我们就需要用到Comparable 或 Comparator接口,然后重写里面的compareTo()方法。假设我们有一个学生类,默认需要按照学生的年龄age排序,具体实现如下:
- class Student implements Comparable<Student>{
- private int id;
- private int age;
- private String name;
-
- public Student(int id, int age, String name) {
- this.id = id;
- this.age = age;
- this.name = name;
- }
-
- @Override
- public int compareTo(Student o) {
- //降序
- //return o.age - this.age;
- //升序
- return this.age - o.age;
- }
-
- public int getId() {
- return id;
- }
-
- public void setId(int id) {
- this.id = id;
- }
-
- public int getAge() {
- return age;
- }
-
- public void setAge(int age) {
- this.age = age;
- }
-
- public String getName() {
- return name;
- }
-
- public void setName(String name) {
- this.name = name;
- }
-
- @Override
- public String toString() {
- return "Student{" +
- "id=" + id +
- ", age=" + age +
- ", name='" + name + '\'' +
- '}';
- }
-
- }

这里说一下 public int compareTo(Student o) 方法,它返回三种 int
类型的值: 负整数,零 ,正整数:
返回值 | 含义 |
正整数 | 当前对象的值 > 比较对象的值,升序排序 |
零 | 当前对象的值 = 比较对象的值,不变 |
负整数 | 当前对象的值 < 比较对象的值,降序排序 |
测试:
- public class SortTest {
- public static void main(String[] args) {
- List<Student> list = new ArrayList<>();
- list.add(new Student(103,25,"关羽"));
- list.add(new Student(104,21,"张飞"));
- list.add(new Student(108,18,"刘备"));
- list.add(new Student(101,32,"袁绍"));
- list.add(new Student(109,36,"赵云"));
- list.add(new Student(103,16,"曹操"));
- System.out.println("排序前:");
- for(Student student : list){
- System.out.println(student.toString());
- }
-
- System.out.println("默认排序后:");
- Collections.sort(list);
- for(Student student : list){
- System.out.println(student.toString());
- }
- }
- }

运行结果:
- 排序前:
- Student{id=103, age=25, name='关羽'}
- Student{id=104, age=21, name='张飞'}
- Student{id=108, age=18, name='刘备'}
- Student{id=101, age=32, name='袁绍'}
- Student{id=109, age=36, name='赵云'}
- Student{id=103, age=16, name='曹操'}
- 默认排序后:
- Student{id=103, age=16, name='曹操'}
- Student{id=108, age=18, name='刘备'}
- Student{id=104, age=21, name='张飞'}
- Student{id=103, age=25, name='关羽'}
- Student{id=101, age=32, name='袁绍'}
- Student{id=109, age=36, name='赵云'}
-
Comparator的两种使用方法:
Collections.sort(list,Comparator<T>);
list.sort(Comparator<T>);
这个时候需求又来了,默认是用 age
排序,但是有的时候需要用 id
来排序怎么办? 这个时候比较器 :Comparator
就排上用场了:
- //自定义排序:使用匿名内部类,实现Comparator接口,重写compare方法
- Collections.sort(list, new Comparator<Student>() {
- @Override
- public int compare(Student o1, Student o2) {
- return o1.getId() - o2.getId();
- }
- });
- //自定义排序2
- list.sort(new Comparator<Student>() {
- @Override
- public int compare(Student o1, Student o2) {
- return o1.getId() - o2.getId();
- }
- });
compare(Student o1, Student o2)
方法的返回值跟 Comparable<>
接口的 compareTo(Student o)
方法返回值意思相同
运行结果:
- 自定义ID排序后:
- Student{id=101, age=32, name='袁绍'}
- Student{id=103, age=16, name='曹操'}
- Student{id=103, age=25, name='关羽'}
- Student{id=104, age=21, name='张飞'}
- Student{id=108, age=18, name='刘备'}
- Student{id=109, age=36, name='赵云'}
源码:
- import java.util.ArrayList;
- import java.util.Collections;
- import java.util.Comparator;
- import java.util.List;
-
- class Student implements Comparable<Student>{
- private int id;
- private int age;
- private String name;
-
- public Student(int id, int age, String name) {
- this.id = id;
- this.age = age;
- this.name = name;
- }
-
- @Override
- public int compareTo(Student o) {
- //降序
- //return o.age - this.age;
- //升序
- return this.age - o.age;
- }
-
- public int getId() {
- return id;
- }
-
- public void setId(int id) {
- this.id = id;
- }
-
- public int getAge() {
- return age;
- }
-
- public void setAge(int age) {
- this.age = age;
- }
-
- public String getName() {
- return name;
- }
-
- public void setName(String name) {
- this.name = name;
- }
-
- @Override
- public String toString() {
- return "Student{" +
- "id=" + id +
- ", age=" + age +
- ", name='" + name + '\'' +
- '}';
- }
-
- }
-
- public class SortTest {
- public static void main(String[] args) {
- List<Student> list = new ArrayList<>();
- list.add(new Student(103,25,"关羽"));
- list.add(new Student(104,21,"张飞"));
- list.add(new Student(108,18,"刘备"));
- list.add(new Student(101,32,"袁绍"));
- list.add(new Student(109,36,"赵云"));
- list.add(new Student(103,16,"曹操"));
- System.out.println("排序前:");
- for(Student student : list){
- System.out.println(student.toString());
- }
-
- System.out.println("默认排序后:");
- Collections.sort(list);
- for(Student student : list){
- System.out.println(student.toString());
- }
- //自定义排序:使用匿名内部类,实现Comparator接口,重写compare方法
- Collections.sort(list, new Comparator<Student>() {
- @Override
- public int compare(Student o1, Student o2) {
- return o1.getId() - o2.getId();
- }
- });
- System.out.println("自定义ID排序后:");
- for(Student student : list){
- System.out.println(student.toString());
- }
- //自定义排序2
- list.sort(new Comparator<Student>() {
- @Override
- public int compare(Student o1, Student o2) {
- return o1.getId() - o2.getId();
- }
- });
-
- }
- }

1.正常排序一个数组:Arrays.sort(int [] a);
我们看一下源码:
- public static void sort(int[] a) {
- DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
- }
本质上还是用到了快排,同时默认时从小到大进行排序的,具体实现:
- public static void main(String[] args) {
- //1.Arrays.sort(int[] a) 默认从小到达排序
- int[] a = new int[]{10,2,7,8,9,15,7};
- System.out.println("默认时从小到大排序:");
- Arrays.sort(a);
- for(int x : a) System.out.print(x + " ");
- }
运行结果:
- 默认时从小到大排序:
- 2 7 7 8 9 10 15
2.在一定区间内排序数组:Arrays.sort(int[] a, int fromIndex, int toIndex)
->规则为从fromIndex<= a数组 <toIndex,左闭右开
- public static void main(String[] args) {
- //2.Arrays.sort(int[] a, int fromIndex, int toIndex)
- //规则为从fromIndex<= a数组 <toIndex
- int[] a = new int[]{2,5,4,1,19,3,2};
- Arrays.sort(a,1,4);
- for(int x : a) System.out.print(x + " ");
- }
实现方法:Collections.reverseOrder()
public static <T> void sort(T[] a,int fromIndex, int toIndex, Comparator<? super T> c)
要实现降序排序,得通过包装类型的数组来实现,基本数据类型数组是不行的:
正确用法:
- //2.java自带的Collections.reverseOrder() 降序排序数组
- System.out.println("java自带的Collections.reverseOrder():");
- Integer[] integers = new Integer[]{10, 293, 35, 24, 64, 56};
- Arrays.sort(integers, Collections.reverseOrder());
-
- for (Integer integer : integers) System.out.print(integer + " ");
运行结果:
- java自带的Collections.reverseOrder():
- 293 64 56 35 24 10
自定义排序方法,需要实现java.util.Comparetor 接口中的compare方法
- //3.自定义排序方法,实现java.util.Comparetor 接口中的compare方法
- Integer[] integers2 = new Integer[]{10, 293, 35, 24, 64, 56};
-
- Arrays.sort(integers2, new Comparator<Integer>() {
- @Override
- public int compare(Integer o1, Integer o2) {
- return o2.compareTo(o1);
- }
- });
- System.out.println("自定义排序方法:");
- for (int x : integers2) System.out.print(x + " ");
运行结果:
- 自定义排序方法:
- 293 64 56 35 24 10
同时,我们可以用lambda表达是简化书写:
- //4.lambda表达式简化书写
- Integer[] integers3 = new Integer[]{10, 293, 35, 24, 64, 56};
- Arrays.sort(integers3, (o1, o2) -> {
- return o2 - o1;
- });
- System.out.println("lambda表达式简化书写:");
- for (int x : integers3) System.out.print(x + " ");
运行结果:
- lambda表达式简化书写:
- 293 64 56 35 24 10
源码:
- import java.util.*;
- public class sortTest {
- public static void main1(String[] args) {
- //1.Arrays.sort(int[] a) 默认从小到达排序
- int[] a = new int[]{10,2,7,8,9,15,7};
- System.out.println("默认时从小到大排序:");
- Arrays.sort(a);
- for(int x : a) System.out.print(x + " ");
- }
-
- public static void main2(String[] args) {
- //2.Arrays.sort(int[] a, int fromIndex, int toIndex)
- //规则为从fromIndex<= a数组 <toIndex
- int[] a = new int[]{2,5,4,1,19,3,2};
- Arrays.sort(a,1,4);
- for(int x : a) System.out.print(x + " ");
- }
-
- public static void main3(String[] args) {
- /* //1.实现降序排序,基本的数据类型数组是不行的
- int[] a = new int[]{10,293,35,24,64,56};
- Arrays.sort(a,Collections.reverseOrder());
- for(int x : a) System.out.println(x + " ");*/
-
- //2.java自带的Collections.reverseOrder() 降序排序数组
- System.out.println("java自带的Collections.reverseOrder():");
- Integer[] integers = new Integer[]{10, 293, 35, 24, 64, 56};
- Arrays.sort(integers, Collections.reverseOrder());
-
- for (Integer integer : integers) System.out.print(integer + " ");
-
- System.out.println();
- System.out.println("===================================");
- //3.自定义排序方法,实现java.util.Comparetor 接口中的compare方法
- Integer[] integers2 = new Integer[]{10, 293, 35, 24, 64, 56};
-
- Arrays.sort(integers2, new Comparator<Integer>() {
- @Override
- public int compare(Integer o1, Integer o2) {
- return o2.compareTo(o1);
- }
- });
- System.out.println("自定义排序方法:");
- for (int x : integers2) System.out.print(x + " ");
-
- System.out.println();
- System.out.println("===================================");
- //4.lambda表达式简化书写
- Integer[] integers3 = new Integer[]{10, 293, 35, 24, 64, 56};
- Arrays.sort(integers3, (o1, o2) -> {
- return o2 - o1;
- });
- System.out.println("lambda表达式简化书写:");
- for (int x : integers3) System.out.print(x + " ");
-
-
- }
- }

补充,二维数组的排序:通过实现Comparator接口来自定义排序二维数组,以下面为例:
- import java.util.Arrays;
- import java.util.Comparator;
-
- class Cmp implements Comparator<int[]>{
-
- @Override
- public int compare(int[] o1, int[] o2) {
- return o1[0] - o2[0];
- }
- }
- public class Sort {
- public static void main123(String[] args) {
- int[][] res = new int[][]{
- {3,6,7,8},
- {2,3,65,7},
- {1,4,5,78},
- {6,1,2,4}
- };
- //自定义排序二维数组,这里是按照每行第一个数字进行排序
- Arrays.sort(res,new Cmp());
- for(int i = 0;i < res.length;i++){
- for(int j = 0;j < res[0].length;j++){
- System.out.print(res[i][j] + " ");
- }
- System.out.println();
- }
- }
- }

运行结果:
好啦~本文到这里也是接近尾声了,希望有帮助到你,整理不易,希望多多三联支持呀~
结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。