赞
踩
二叉搜索树又称二叉排序树或者二叉查找树,它或者是一棵空树,或者是具有以下性质的二叉树:
以下列数组创建的搜索二叉树为例:
int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13};
插入的具体过程如下:
例如:
首先查找元素是否在二叉搜索树中,如果不存在,则返回, 否则要删除的结点可能分下面四种情况:
看起来有待删除节点有4中情况,实际情况 1 可以与情况 2 或者 3 合并起来,因此真正的删除过程如下:
情况2:删除该结点且使被删除节点的双亲结点指向被删除节点的左孩子结点–直接删除。
情况3:删除该结点且使被删除节点的双亲结点指向被删除结点的右孩子结点–直接删除。
情况4:在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题–替换法删除。
例如:
template<class K>
struct BSTreeNode
{
BSTreeNode<K>* _left;
BSTreeNode<K>* _right;
K _key;
BSTreeNode(const K& key)
:_key(key)
,_left(nullptr)
,_right(nullptr)
{}
};
template<class K> class BSTree { typedef BSTreeNode<K> Node; private: void DestoryTree(Node* root) { if (root == nullptr) return; DestoryTree(root->_left); DestoryTree(root->_right); delete root; } Node* CopyTree(Node* root) { if (root == nullptr) return nullptr; Node* copyNode = new Node(root->_key); copyNode->_left = CopyTree(root->_left); copyNode->_right = CopyTree(root->_right); return copyNode; } public: BSTree() = default;//C++11、强制编译器自己生成构造函数 BSTree(const BSTree<K>& t) { _root = CopyTree(t._root); } BSTree<K>& operator=(BSTree<K> t) { std::swap(_root, t._root); return *this; } ~BSTree() { DestoryTree(_root); _root = nullptr; } private: Node* _root = nullptr; };
bool _InsertR(Node*& root, const K& key) { if (root == nullptr) { root = new Node(key); return true; } if (root->_key > key) { return _InsertR(root->_left, key); } else if (root->_key < key) { return _InsertR(root->_right, key); } else { return false; } } bool InsertR(const K& key) { return _InsertR(_root, key); }
bool Insert(const K& key) { if (_root == nullptr) { _root = new Node(key); return true; } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_key > key) { parent = cur; cur = cur->_left; } else if (cur->_key < key) { parent = cur; cur = cur->_right; } else { return false;//存在重复元素 } } cur = new Node(key); if (parent->_key < key) { parent->_right = cur; } else { parent->_left = cur; } return true; }
bool _EraseR(Node*& root, const K& key) { if (root == nullptr) return false; if (root->_key > key) { return _EraseR(root->_left, key); } else if (root->_key < key) { return _EraseR(root->_right, key); } else { Node* del = root; if (root->_left == nullptr) { root = root->_right; } else if (root->_right == nullptr) { root = root->_left; } else { Node* minRight = root->_right; while (minRight->_left) { minRight = minRight->_left; } swap(root->_key, minRight->_key); return _EraseR(root->_right, key); } delete del; return true; } } bool EraseR(const K& key) { return _EraseR(_root, key); }
bool Erase(const K& key) { Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key > key) { parent = cur; cur = cur->_left; } else { //一个孩子 左空/右空 if (cur->_left == nullptr) { if (cur == _root) { _root = cur->_right; } else { if (cur == parent->_left) { parent->_left = cur->_right; } else { parent->_right = cur->_right; } } delete cur; } else if (cur->_right == nullptr) { if (cur == _root) { _root = cur->_left; } else { if (cur == parent->_left) { parent->_left = cur->_left; } else { parent->_right = cur->_left; } } delete cur; } //两个孩子 else { Node* minRight = cur->_right; Node* minParent = cur; while (minRight->_left) { minParent = minRight; minRight = minRight->_left; } //cur->_key = minRight->_key; swap(minRight->_key, cur->_key); if (minParent->_left == minRight) { minParent->_left = minRight->_right; } else { minParent->_right = minRight->_right; } delete minRight; } return true; } } return false; }
bool _FindR(Node* root, const K& key) { if (root == nullptr) return false; if (root->_key < key) { return _FindR(root->_right, key); } else if (root->_key > key) { return _FindR(root->_left, key); } else { return true; } } bool FindR(const K& key) { return _FindR(_root, key); }
bool Find(const K& key) { Node* cur = _root; while (cur) { if (cur->_key < key) { cur = cur->_right; } else if (cur->_key > key) { cur = cur->_left; } else { return true; } } return false; }
#pragma once #include<algorithm> #include<iostream> using namespace std; template<class K> struct BSTreeNode { BSTreeNode<K>* _left; BSTreeNode<K>* _right; K _key; BSTreeNode(const K& key) :_key(key) ,_left(nullptr) ,_right(nullptr) {} }; template<class K> class BSTree { typedef BSTreeNode<K> Node; public: BSTree() = default;//C++11、强制编译器自己生成构造函数 BSTree(const BSTree<K>& t) { _root = CopyTree(t._root); } BSTree<K>& operator=(BSTree<K> t) { std::swap(_root, t._root); return *this; } ~BSTree() { DestoryTree(_root); _root = nullptr; } bool Insert(const K& key) { if (_root == nullptr) { _root = new Node(key); return true; } Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_key > key) { parent = cur; cur = cur->_left; } else if (cur->_key < key) { parent = cur; cur = cur->_right; } else { return false;//存在重复元素 } } cur = new Node(key); if (parent->_key < key) { parent->_right = cur; } else { parent->_left = cur; } return true; } void InOrder() { _InOrder(_root); cout << endl; } bool Find(const K& key) { Node* cur = _root; while (cur) { if (cur->_key < key) { cur = cur->_right; } else if (cur->_key > key) { cur = cur->_left; } else { return true; } } return false; } bool Erase(const K& key) { Node* parent = nullptr; Node* cur = _root; while (cur) { if (cur->_key < key) { parent = cur; cur = cur->_right; } else if (cur->_key > key) { parent = cur; cur = cur->_left; } else { //一个孩子 左空/右空 if (cur->_left == nullptr) { if (cur == _root) { _root = cur->_right; } else { if (cur == parent->_left) { parent->_left = cur->_right; } else { parent->_right = cur->_right; } } delete cur; } else if (cur->_right == nullptr) { if (cur == _root) { _root = cur->_left; } else { if (cur == parent->_left) { parent->_left = cur->_left; } else { parent->_right = cur->_left; } } delete cur; } //两个孩子 else { Node* minRight = cur->_right; Node* minParent = cur; while (minRight->_left) { minParent = minRight; minRight = minRight->_left; } //cur->_key = minRight->_key; swap(minRight->_key, cur->_key); if (minParent->_left == minRight) { minParent->_left = minRight->_right; } else { minParent->_right = minRight->_right; } delete minRight; } return true; } } return false; } bool FindR(const K& key) { return _FindR(_root, key); } bool InsertR(const K& key) { return _InsertR(_root, key); } bool EraseR(const K& key) { return _EraseR(_root, key); } private: bool _EraseR(Node*& root, const K& key) { if (root == nullptr) return false; if (root->_key > key) { return _EraseR(root->_left, key); } else if (root->_key < key) { return _EraseR(root->_right, key); } else { Node* del = root; if (root->_left == nullptr) { root = root->_right; } else if (root->_right == nullptr) { root = root->_left; } else { Node* minRight = root->_right; while (minRight->_left) { minRight = minRight->_left; } swap(root->_key, minRight->_key); return _EraseR(root->_right, key); } delete del; return true; } } bool _InsertR(Node*& root, const K& key) { if (root == nullptr) { root = new Node(key); return true; } if (root->_key > key) { return _InsertR(root->_left, key); } else if (root->_key < key) { return _InsertR(root->_right, key); } else { return false; } } void DestoryTree(Node* root) { if (root == nullptr) return; DestoryTree(root->_left); DestoryTree(root->_right); delete root; } Node* CopyTree(Node* root) { if (root == nullptr) return nullptr; Node* copyNode = new Node(root->_key); copyNode->_left = CopyTree(root->_left); copyNode->_right = CopyTree(root->_right); return copyNode; } void _InOrder(Node* root) { if (root == nullptr) return; _InOrder(root->_left); cout << root->_key << " "; _InOrder(root->_right); } bool _FindR(Node* root, const K& key) { if (root == nullptr) return false; if (root->_key < key) { return _FindR(root->_right, key); } else if (root->_key > key) { return _FindR(root->_left, key); } else { return true; } } private: Node* _root = nullptr; };
二叉搜索树的插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度的函数,即结点越深,则比较次数越多。但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:
如果想要二叉搜索树的性能都能达到最优,那么要实现AVL树和红黑树。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。