当前位置:   article > 正文

一文汇总开源大语言模型,人人都可以拥有自己的ChatGPT

开源大语言模型

前言

OpenAI发布的ChatGPT火爆全球以来,全球互联网大厂陆续跟进,纷纷宣布了自家的Chat产品,如Google的Bard,百度的文心一言,阿里的通义千问等等。

这些Chat产品背后都是依赖的大语言模型(Large Language Model)。

如果是做一个垂直领域的Chat产品,有2种方案:

  • 直接使用商业化产品,前提是商业化产品支持对模型做fine-tune(微调)。比如OpenAI就支持对它的基础模型做fine-tune来实现个性化的模型。
  • 使用开源的大语言模型,对开源模型做fine-tune来实现垂直领域的Chat产品。

本文重点介绍有较大参考价值的开源大语言模型,方便大家快速找到适合自己应用场景的开源模型。

开源大语言模型

<
Model 作者 参数量 训练数据量(tokens) 训练成本
LLaMA Meta 包括 70 亿、130 亿、330 亿、650 亿 4 种参数规模 1.4万亿 2048个A100 GPU
Alpaca Stanford 70亿 52k条问答指令数据,指令数据来源于OpenAI的API返回结果 500美元数据成本+100美元训练成本
Vicuna UC Berkeley, CMU, Stanford, UCSD and MBZUAI 130亿
声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/一键难忘520/article/detail/984233
推荐阅读
相关标签
  

闽ICP备14008679号