当前位置:   article > 正文

YOLOv5 | 鬼魅(幽灵)卷积 | 改进Ghost卷积轻量化网络_ghost yolov5

ghost yolov5

目录

原理简介

代码实现

yaml文件实现

检查是否添加执行成功 

完整代码分享 

论文创新必备

启动命令


由于内存和计算资源有限,在嵌入式设备上部署卷积神经网络 (CNN) 很困难。特征图中的冗余是那些成功的 CNN 的一个重要特征,但在神经架构设计中很少被研究。一种新颖的 Ghost 模块,可以通过廉价的操作生成更多的特征图。基于一组内在特征图,以低廉的成本应用一系列线性变换来生成许多鬼特征图,这些特征图可以充分揭示内在特征背后的信息。Ghost 模块可以作为即插即用组件来升级现有的卷积神经网络。 Ghostbottleneck旨在堆叠Ghost模块,然后可以轻松建立轻量级的GhostNet。Ghost 模块是基线模型中卷积层的令人印象深刻的替代品,并且GhostNet 可以比 MobileNetV3 实现更高的识别性能,并且在 ImageNet ILSVRC2012 分类数据集上具有相似的计算成本。

 ⭐欢迎大家订阅我的专栏一起学习⭐

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/一键难忘520/article/detail/778361
推荐阅读
相关标签