当前位置:   article > 正文

联结主义时间分类(Connectionist temporal classification)的论文笔记_联结主义时间分类器

联结主义时间分类器

前言:

{

最近在github上更新了一些代码,但没在这里更新文章,这次就在这写一篇论文的阅读笔记。

论文是《Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural 'networks》(Alex Graves, Santiago Fernández,Faustino J. Gomez, Jürgen Schmidhuber,https://www.researchgate.net/publication/221346365_Connectionist_temporal_classification_Labelling_unsegmented_sequence_data_with_recurrent_neural_%27networks),主题是序列识别的方法。

}

 

正文:

{

首先,论文的第一节Introduction提到了之前方法的问题:

  1. they usually require a significant amount of task specific knowledge, e.g. to design the state models for HMMs, or choose the input features for CRFs; (2)they require explicit (and often questionable) dependency assumptions to make inference tractable, e.g. the assumption that observations are independent for HMMs; (3) for standard HMMs, training is generative, even though sequence labelling is discriminative.

    (1)通常这些方法需要很多任务专属的知识,比如说需要为HMMs设计状态模型,

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/817903
推荐阅读
相关标签
  

闽ICP备14008679号