当前位置:   article > 正文

ros自己写避障算法_让无人机自主避障教学研究迈向更高处slam导航避障算法

ros无人机避障

f7d89516f3e962d473f53802ab7e136e.gif

  随着消费级无人机技术的不断成熟,不断完善的自动避障系统可以极大的减少因操作失误而带来的各项损失,目前避障能力正逐渐成为了无人机自动化或智能化的关键点所在。

  让无人机自主避障教学研究迈向更高处slam导航避障算法。根据无人机避障技术的原理和发展趋势,可以将无人机避障技术分为三重阶段:即感知障碍物阶段、绕过障碍物和场景建模和路径搜索。

  感知障碍阶段

  "在开阔场地飞行,尽量避开人群,避免因操作失误而带来的安全事故”是目前大部分消费级无人机的使用说明上都会出现的一项标注,因此各无人机开发商为了降低安全事故的发生几率,都将避障技术作为了开发的重点。而如何实现无人机自动避障,首先要实现的是如何精确的测量无人机与障碍物之间的距离,只有先测量出危险范围内的距离,才可以有时间在撞向障碍物之前停止无人机的前进动作,进而避免事故的发生。就如人类或其他动物在前进的过程中,只有先看见前方的障碍物,并且会大致估算出自己与障碍物之间的距离,才能决定下一步的行为方向,因此虽然看似测距停止的这种思路很简单粗暴,但在实际应用中还是有一定的存在意义。

  而目前的无人机领域被广泛应用到的障碍物检测方法有超声波测距、红外或激光测距、双目视觉、电子地图等。其中双目视觉技术更是利用了人眼如何估计视觉的原理,是目前较受无人机开发商青睐的一种技术。超声波测距其实是一种比较成熟的测距技术,而成本相对较低,目前被大量的应用于家用的汽车倒车雷达上,但是其测量距离较近,而且对反射面有着一定的要求 ,因此常被用来测量无人机与地面之间的距离,而非与障碍物之间的距离。

  红外或激光测距又称TOF是利用传感器发射定频率的信号,通过计算反射信号与原信号之间的相位差来确定信号的飞行时间,并最终确定的无人机与障碍物之间的距离,该技术一旦达到高等级 ,还可以获得障碍物的深度图。

  而双目视觉技术是运用了人眼计算距离的原理,是机器视觉的一种重要形式,主要基于视察原理并利用成像设备从不同的位置获取被测物体的两幅图像,并通过计算图像对应点之间的位偏差,来确定物体三维几何信息的方法。虽然该技术的难度较高.但是已经开始逐渐应用到无人机避障技术中来。

  电子地图则是借助GPS系统、细粒度的数字高程地图和城市建筑3D地图,比较适用于无人机的禁区功能,不仅可以避免重要建筑物受到撞击,还可实现多种情况下的避障功能。

  在看过基本的障碍物测量原理之后,我们可以继续看无人机的避障功能,最简单的概况就是通过各项障碍物测量技术,来保障无人机与障碍物之间的距离并且根据距离实行下一步的飞行计划,然而在遇到障碍物之后就保持距离并进行等待,只能说是无人机避障功能的最初级阶段。

89f1417979a4d59415f33024314b9446.png

  绕过障碍阶段

  当无人机遇到障碍物之后进行悬停等待,等待已经完全不能满足操作者们的使用需求目标,但是获取前方障碍物距离容易,获取精准的障碍物轮廓并绕过去却是新的技术障碍,而关键点则如何精确获得障碍物的深度图像。

  在自然界中,动物们都知道前方遇到障碍物时该如何绕过去,而不是只在障碍物之前等待,而原因在于动物们可以知道障碍物的大致轮廓,只要找到边缘处所在,就可以从边上绕过去,然而看似简单的做法却包含着很深的套路。

  很简单的就是目前的测障技术很难满足障碍物轮廓获取的需求,当无人机采用超声波进行测距时,只能大致测出前方的距离,只能获得二维的数值,而非三维的画面。

  但是目前

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/weixin_40725706/article/detail/390353
推荐阅读
相关标签
  

闽ICP备14008679号