赞
踩
### 常规设置 import os import math import time import glob import warnings import itertools import numpy as np import pandas as pd from PIL import Image import multiprocessing from collections import Counter import matplotlib.pyplot as plt plt.rcParams['figure.dpi'] = 500 #分辨率 plt.rcParams['savefig.dpi'] = 500 #图片像素 pl.utilities.seed.seed_everything(seed=42) plt.rcParams['figure.figsize'] = (3.5, 2.5) print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) #jupyter 配置信息 %matplotlib inline warnings.filterwarnings("ignore") %config InlineBackend.figure_format = 'svg' ### 医学图形数据处理设置 import pydicom # 用于读取dcm文件 import scipy.misc from skimage.io import imread # 医学影像常用库 from skimage.transform import resize from mpl_toolkits.axes_grid import ImageGrid# 网格图形展示 ### pytorch 设置 import cv2 import torch import functools import torchvision import torch.nn as nn from torchvision import models import pytorch_lightning as pl import imgaug.augmenters as iaa import torch.nn.functional as F from torch.utils.data import DataLoader,Dataset from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler,MinMaxScaler
import cv2
from PIL import Image as ImagePIL
from PIL import Image
im = cv2.imread('123.jpg')
cv2.imwrite('compress123.jpg', im, [cv2.IMWRITE_JPEG_QUALITY, 30])
def clean_words(input_words):
punctuation = '.,;:"!?_-'
word_list = input_words.lower().replace('\n',' ').split()
word_list = [word.strip(punctuation) for word in word_list]
return word_list
torch.cuda.empty_cache()
myList = ["import os","import warnings","import pandas as pd"]
myList1 = sorted(myList,key = lambda i:len(i),reverse=False)
for i in myList1:
print(i)
# mycolors = stata_pal("s2color")(15)
mycolors = ["#1a476f","#90353b","#55752f","#e37e00","#6e8e84",
"#c10534","#938dd2","#cac27e","#a0522d","#7b92a8",
"#2d6d66","#9c8847","#bfa19c","#ffd200","#d9e6eb"]
def p_adjust_bh(p):
p = np.asfarray(p)
by_descend = p.argsort()[::-1]
by_orig = by_descend.argsort()
steps = float(len(p)) / np.arange(len(p), 0, -1)
q = np.minimum(1, np.minimum.accumulate(steps * p[by_descend]))
return q[by_orig]
result['FDR']=p_adjust_bh(result.P)
import argparse parser = argparse.ArgumentParser() # 导入参数 # 可以不设置 default # action='store_true' # 默认为 true parser.add_argument('--batch_size', type=int, default=8, help='size of each image batch') parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate') parser.add_argument('--cuda_device', type=str, default="2,3", help='whether to use cuda if available') parser.add_argument('-d', '--drop', action='store_true', help='Decision to drop input genes from X matrix') opt = parser.parse_args() # 调用 opt.batch_size
import yaml
# 读取配置文件的方式
config_path = 'configs/config_template.yaml'
config_dict = yaml.safe_load(open(config_path, 'r'))
# 引入一个time模块, * 表示time模块的所有功能,
# 作用: 可以统计程序运行的时间
from time import *
begin_time = time()
# 图片读取
rgb = Image.open(self.rgb[idx])
end_time = time()
run_time = end_time-begin_time
print ('该循环程序运行时间:',run_time) #该循环程序运行时间: 1.4201874732
### h5 存储
df = pd.read_csv('scale_df.csv',index_col=0)
h5 = pd.HDFStore('scale_df.h5','w',complevel=4, complib='blosc')
h5['data'] = df
h5.close()
df = pd.read_hdf('scale_df.h5',key='data')
import h5py
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。