赞
踩
在上一篇Pytorch学习基础——LeNet从训练到测试讲述了简单神经网络LeNet识别MNIST数据集的实例,作为对比,本次将结合LSTM实现对MNIST数据集的识别。
实现过程:
- import torch
- import torchvision
- from torch import nn
- from torch.autograd import Variable
- import torchvision.datasets as dsets
- import torchvision.transforms as transforms
- import matplotlib.pyplot as plt
-
- #define hyperparameter
- EPOCH = 1
- BATCH_SIZE = 64
- TIME_STEP = 28 #time_step / image_height
- INPUT_SIZE = 28 #input_step / image_width
- LR = 0.01
- DOWNLOAD = True
- #get the mnist dataset
- train_data = dsets.MNIST(root='./', train=True, transform=torchvision.transforms.ToTensor(), download=False)
- test_data = dsets.MNIST(root='./', train=False, transform=torchvision.transforms.ToTensor())
- test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255
- test_y = test_data.test_labels.numpy()[:2000]
- #use dataloader to batch input dateset
- train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
注意与CNN数据加载时的区别,LSTM将图片按行排列作为序列,实现循环神经网络的训练和测试
- #define the RNN class
- class RNN(nn.Module):
- #overload __init__() method
- def __init__(self):
- super(RNN, self).__init__()
-
- self.rnn = nn.LSTM(
- input_size=28,
- hidden_size=64,
- num_layers=1,
- batch_first=True,
- )
- self.out = nn.Linear(64,10)
-
- #overload forward() method
- def forward(self, x):
- r_out, (h_n, h_c) = self.rnn(x, None)
- out = self.out(r_out[: ,-1, :])
- return out
- rnn = RNN()
- print(rnn)

- #define optimizer with Adam optim
- optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)
- #define cross entropy loss function
- loss_func = nn.CrossEntropyLoss()
- #training and testing
- for epoch in range(EPOCH):
- for step, (b_x, b_y) in enumerate(train_loader):
- #recover x as (batch, time_step, input_size)
- b_x = b_x.view(-1, 28, 28)
-
- output = rnn(b_x)
- loss = loss_func(output, b_y)
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
-
- if step % 50 == 0:
- #train with rnn
- test_output = rnn(test_x)
- #loss function
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- #accuracy calculate
- acc = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)
- print('Epoch: ', (epoch), 'train loss: %.3f'%loss.data.numpy(), 'test acc: %.3f'%(acc))

- # print 100 predictions from test data
- numTest = 100
- test_output = rnn(test_x[:numTest].view(-1, 28, 28))
- pred_y = torch.max(test_output, 1)[1].data.numpy()
- print(pred_y, 'prediction number')
- print(test_y[:numTest], 'real number')
- ErrorCount = 0.0
- for i in pred_y:
- if pred_y[i] != test_y[i]:
- ErrorCount += 1
- print('ErrorRate : %.3f'%(ErrorCount / numTest))
实验结果:
可以看到,LSTM网络既可以用于语音处理,同时可以进行图像分类,此时的“图像”被抽象为按行排列的序列,对于MNIST数据集 的测试表明,LSTM可以在较短时间内实现对数字手势的识别。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。