赞
踩
分享一下基于transformer的时间序列预测模型python代码,给大家,记得点赞哦
- #!/usr/bin/env python
- # coding: 帅帅的笔者
-
- import torch
- import torch.nn as nn
- import numpy as np
- import pandas as pd
- import time
- import math
- import matplotlib.pyplot as plt
- from sklearn.preprocessing import MinMaxScaler
-
- # Set random seeds for reproducibility
- torch.manual_seed(0)
- np.random.seed(0)
-
- # Hyperparameters
- input_window = 10
- output_window = 1
- batch_size = 250
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
- epochs = 100
- lr = 0.00005
-
- # Load data
- df = pd.read_csv("data1.csv", parse_dates=["value"], index_col=[0], encoding='gbk')
- data = np.array(df['value']).reshape(-1, 1)
-
- # Normalize data
- scaler = MinMaxScaler(feature_range=(-1, 1))
- data_normalized = scaler.fit_transform(data)
-
- # Split the data into train and validation sets
- train_ratio = 0.828
- train_size = int(len(data) * train_ratio)
- val_size = len(data) - train_size
- train_data_normalized = data_normalized[:train_size]
- val_data_normalized = data_normalized[train_size:]
-
- # Define the Transformer model
- class PositionalEncoding(nn.Module):
- def __init__(self, d_model, max_len=5000):
- super(PositionalEncoding, self).__init__()
- pe = torch.zeros(max_len, d_model)
- position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
- div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
- pe[:, 0::2] = torch.sin(position * div_term)
- pe[:, 1::2] = torch.cos(position * div_term)
- pe = pe.unsqueeze(0).transpose(0, 1)
- self.register_buffer('pe', pe)
-
- def forward(self, x):
- return x + self.pe[:x.size(0), :]
-
- class TransAm(nn.Module):
- def __init__(self, feature_size=250, num_layers=1, dropout=0.1):
- super(TransAm, self).__init__()
- self.model_type = 'Transformer'
- self.src_mask = None
- self.pos_encoder = PositionalEncoding(feature_size)
- self.encoder_layer = nn.TransformerEncoderLayer(d_model=feature_size, nhead=10, dropout=dropout)
- self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
- self.decoder = nn.Linear(feature_size, 1)
- self.init_weights()
-
- def init_weights(self):
- initrange = 0.1
- self.decoder.bias.data.zero_()
- self.decoder.weight.data.uniform_(-initrange, initrange)
-
- def forward(self, src):
- if self.src_mask is None or self.src_mask.size(0) != len(src):
- device = src.device
- mask = self._generate_square_subsequent_mask(len(src)).to(device)
- self.src_mask = mask
-
- src = self.pos_encoder(src)
- output = self.transformer_encoder(src, self.src_mask)
- output = self.decoder(output)
- return output
-
- def _generate_square_subsequent_mask(self, sz):
- mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
- mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
- return mask
-
-
-
- # Create the dataset for the model
- def create_inout_sequences(data, input_window, output_window):
- inout_seq = []
- length = len(data)
- for i in range(length - input_window - output_window):
- train_seq = data[i:i+input_window]
- train_label = data[i+input_window:i+input_window+output_window]
- inout_seq.append((train_seq, train_label))
- return inout_seq
-
- train_data = create_inout_sequences(train_data_normalized, input_window, output_window)
- val_data = create_inout_sequences(val_data_normalized, input_window, output_window)
-
- # Train the model
- model = TransAm().to(device)
- criterion = nn.MSELoss()
- optimizer = torch.optim.AdamW(model.parameters(), lr=lr)
- scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
-
- def train(train_data):
- model.train()
- total_loss = 0.
- for i in range(0, len(train_data) - 1, batch_size):
- data, targets = torch.stack([torch.tensor(item[0], dtype=torch.float32) for item in train_data[i:i+batch_size]]).to(device), torch.stack([torch.tensor(item[1], dtype=torch.float32) for item in train_data[i:i+batch_size]]).to(device)
- optimizer.zero_grad()
- output = model(data)
- loss = criterion(output, targets)
- loss.backward()
- torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
- optimizer.step()
- total_loss += loss.item()
- return total_loss / len(train_data)
-
- def validate(val_data):
- model.eval()
- total_loss = 0.
- with torch.no_grad():
- for i in range(0, len(val_data) - 1, batch_size):
- data, targets = torch.stack([torch.tensor(item[0], dtype=torch.float32) for item in val_data[i:i+batch_size]]).to(device), torch.stack([torch.tensor(item[1], dtype=torch.float32) for item in val_data[i:i+batch_size]]).to(device)
- output = model(data)
- loss = criterion(output, targets)
- total_loss += loss.item()
- return total_loss / len(val_data)
-
-
-
-
- best_val_loss = float("inf")
- best_model = None
-
- for epoch in range(1, epochs + 1):
- epoch_start_time = time.time()
- train_loss = train(train_data)
- val_loss = validate(val_data)
- scheduler.step()
-
- if val_loss < best_val_loss:
- best_val_loss = val_loss
- best_model = model
-
- # Predict and denormalize the data
- def predict(model, dataset):
- model.eval()
- predictions = []
- actuals = []
- with torch.no_grad():
- for i in range(len(dataset)):
- data, target = dataset[i]
- data = torch.tensor(data, dtype=torch.float32).to(device)
- output = model(data.unsqueeze(0))
- prediction = output.squeeze().cpu().numpy()
- predictions.append(prediction)
- actuals.append(target)
- return np.array(predictions), np.array(actuals)
-
- predictions, actuals = predict(best_model, val_data)
- print("Predictions shape:", predictions.shape)
- print("Actuals shape:", actuals.shape)
-
- predictions_denorm = scaler.inverse_transform(predictions)
- actuals_denorm = scaler.inverse_transform(actuals.flatten().reshape(-1, 1))
-
- # Plot the results
- plt.plot(predictions_denorm, label='Predictions')
- plt.plot(actuals_denorm, label='Actuals')
- plt.legend(['Predictions', 'Actuals'])
- plt.xlabel('Timestep')
- plt.ylabel('High')
- plt.legend()
- plt.show()
-
-
-
-
-
-

更多时间序列预测代码:时间序列预测算法全集合--深度学习
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。