赞
踩
model.py
对transformers的bert源码的解读
- # coding=utf-8
-
- from __future__ import absolute_import, division, print_function, unicode_literals
-
- import copy
- import json
- import logging
- import math
- import os
- import shutil
- import tarfile
- import tempfile
- import sys
- from io import open
-
- import torch
- from torch import nn
- from torch.nn import CrossEntropyLoss
-
- from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME
-
- logger = logging.getLogger(__name__)
-
-
- # uncased不分大小写 multilingual多语种的
- PRETRAINED_MODEL_ARCHIVE_MAP = {
- 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
- 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
- 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
- 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
- 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
- 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
- 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
- }
- BERT_CONFIG_NAME = 'bert_config.json'
- TF_WEIGHTS_NAME = 'model.ckpt'
-
- def load_tf_weights_in_bert(model, tf_checkpoint_path):
- """ Load tf checkpoints in a pytorch model
- """
- try:
- import re
- import numpy as np
- import tensorflow as tf
- except ImportError:
- print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
- "https://www.tensorflow.org/install/ for installation instructions.")
- raise
- tf_path = os.path.abspath(tf_checkpoint_path)
- print("Converting TensorFlow checkpoint from {}".format(tf_path))
- # Load weights from TF model
- init_vars = tf.train.list_variables(tf_path)
- names = []
- arrays = []
- for name, shape in init_vars:
- print("Loading TF weight {} with shape {}".format(name, shape))
- array = tf.train.load_variable(tf_path, name)
- names.append(name)
- arrays.append(array)
-
- for name, array in zip(names, arrays):
- name = name.split('/')
- # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
- # which are not required for using pretrained model
- if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
- print("Skipping {}".format("/".join(name)))
- continue
- pointer = model
- for m_name in name:
- if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
- l = re.split(r'_(\d+)', m_name)
- else:
- l = [m_name]
- if l[0] == 'kernel' or l[0] == 'gamma':
- pointer = getattr(pointer, 'weight')
- elif l[0] == 'output_bias' or l[0] == 'beta':
- pointer = getattr(pointer, 'bias')
- elif l[0] == 'output_weights':
- pointer = getattr(pointer, 'weight')
- elif l[0] == 'squad':
- pointer = getattr(pointer, 'classifier')
- else:
- try:
- pointer = getattr(pointer, l[0])
- except AttributeError:
- print("Skipping {}".format("/".join(name)))
- continue
- if len(l) >= 2:
- num = int(l[1])
- pointer = pointer[num]
- if m_name[-11:] == '_embeddings':
- pointer = getattr(pointer, 'weight')
- elif m_name == 'kernel':
- array = np.transpose(array)
- try:
- assert pointer.shape == array.shape
- except AssertionError as e:
- e.args += (pointer.shape, array.shape)
- raise
- print("Initialize PyTorch weight {}".format(name))
- pointer.data = torch.from_numpy(array)
- return model
-
-
- def gelu(x): # bert的激活函数
- """Implementation of the gelu activation function.
- For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
- 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
- Also see https://arxiv.org/abs/1606.08415
- """
- return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
-
-
- def swish(x):
- return x * torch.sigmoid(x)
-
-
- ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
-
-
- class BertConfig(object):
- """Configuration class to store the configuration of a `BertModel`.
- """
- def __init__(self,
- vocab_size_or_config_json_file,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=2,
- initializer_range=0.02):
- """Constructs BertConfig.
- Args:
- vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
- hidden_size: Size of the encoder layers and the pooler layer.
- num_hidden_layers: Number of hidden layers in the Transformer encoder.
- num_attention_heads: Number of attention heads for each attention layer in
- the Transformer encoder.
- intermediate_size: The size of the "intermediate" (i.e., feed-forward)
- layer in the Transformer encoder.
- hidden_act: The non-linear activation function (function or string) in the
- encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
- hidden_dropout_prob: The dropout probabilitiy for all fully connected
- layers in the embeddings, encoder, and pooler.
- attention_probs_dropout_prob: The dropout ratio for the attention
- probabilities.
- max_position_embeddings: The maximum sequence length that this model might
- ever be used with. Typically set this to something large just in case
- (e.g., 512 or 1024 or 2048).
- type_vocab_size: The vocabulary size of the `token_type_ids` passed into
- `BertModel`.
- initializer_range: The sttdev of the truncated_normal_initializer for
- initializing all weight matrices.
- """
- if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
- and isinstance(vocab_size_or_config_json_file, unicode)):
- with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
- json_config = json.loads(reader.read())
- for key, value in json_config.items():
- self.__dict__[key] = value
- elif isinstance(vocab_size_or_config_json_file, int): # isinstance() 函数来判断一个对象是否是一个已知的类型,类似 type()
- self.vocab_size = vocab_size_or_config_json_file
- self.hidden_size = hidden_size
- self.num_hidden_layers = num_hidden_layers
- self.num_attention_heads = num_attention_heads
- self.hidden_act = hidden_act
- self.intermediate_size = intermediate_size
- self.hidden_dropout_prob = hidden_dropout_prob
- self.attention_probs_dropout_prob = attention_probs_dropout_prob
- self.max_position_embeddings = max_position_embeddings
- self.type_vocab_size = type_vocab_size
- self.initializer_range = initializer_range
- else:
- raise ValueError("First argument must be either a vocabulary size (int)"
- "or the path to a pretrained model config file (str)")
-
- @classmethod
- def from_dict(cls, json_object):
- """Constructs a `BertConfig` from a Python dictionary of parameters."""
- config = BertConfig(vocab_size_or_config_json_file=-1)
- for key, value in json_object.items():
- config.__dict__[key] = value
- return config
-
- @classmethod
- def from_json_file(cls, json_file):
- """Constructs a `BertConfig` from a json file of parameters."""
- with open(json_file, "r", encoding='utf-8') as reader:
- text = reader.read()
- return cls.from_dict(json.loads(text))
-
- def __repr__(self):
- return str(self.to_json_string())
-
- def to_dict(self):
- """Serializes this instance to a Python dictionary."""
- output = copy.deepcopy(self.__dict__)
- return output
-
- def to_json_string(self):
- """Serializes this instance to a JSON string."""
- return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
-
- def to_json_file(self, json_file_path):
- """ Save this instance to a json file."""
- with open(json_file_path, "w", encoding='utf-8') as writer:
- writer.write(self.to_json_string())
-
- try:
- from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
- except ImportError:
- logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
- class BertLayerNorm(nn.Module):
- def __init__(self, hidden_size, eps=1e-12):
- """Construct a layernorm module in the TF style (epsilon inside the square root).
- """
- super(BertLayerNorm, self).__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.bias = nn.Parameter(torch.zeros(hidden_size))
- self.variance_epsilon = eps
-
- def forward(self, x):
- u = x.mean(-1, keepdim=True) # 求均值
- s = (x - u).pow(2).mean(-1, keepdim=True) # 求方差
- x = (x - u) / torch.sqrt(s + self.variance_epsilon)
- return self.weight * x + self.bias
-
- class BertEmbeddings(nn.Module):
- """Construct the embeddings from word, position and token_type embeddings.
- """
- def __init__(self, config):
- super(BertEmbeddings, self).__init__()
- self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) # 21128,768
- self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) # 521,76
- self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # 2,768
-
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
-
- '''
- BERT的模型结构里没有递归或循环,为了使模型能有效的利用模型特征,我们需要加入序列中各个token相对位置或token在序列中的绝对位置信息
- 做法是对不同位置随机初始化一个position embedding,将其加到token embedding上输入模型,作为参数进行学习训练
- 绝对位置编码的优点是简单,但位置之间没有约束关系,我们只能期待模型隐形的学习它们之间的关系
- 在transformer中,提出了相对位置编码
- '''
- def forward(self, input_ids, token_type_ids=None):
- # print('input',input_ids.size()) torch.Size([128, 32]) 输入为[batch_size, seq_len]
- # [[ 101, 860, 7741, ..., 0, 0, 0],..
- # [ 101, 8183, 2399, ..., 0, 0, 0]] 101就是[CLS]对于的token_id
- seq_length = input_ids.size(1)
- position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
- # 初始化position [0,1,..,31]
- position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
- # [128, 32] [[ 0, 1, 2, ..., 29, 30, 31],..
- # [ 0, 1, 2, ..., 29, 30, 31]] (128个)
- if token_type_ids is None: # 如果不需要区分token type,也就是说只有一个句子输入时
- token_type_ids = torch.zeros_like(input_ids)
-
- words_embeddings = self.word_embeddings(input_ids)
- position_embeddings = self.position_embeddings(position_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
-
- embeddings = words_embeddings + position_embeddings + token_type_embeddings
- # 四个shape都是[128, 32, 768],即(batch_size, sequence_length, hidden_size)
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- # 为什么这里用layernorm+dropout 而不是batchnorm?
- # https://www.zhihu.com/question/395811291/answer/1260290120
- return embeddings
-
-
- class BertSelfAttention(nn.Module):
- def __init__(self, config):
- super(BertSelfAttention, self).__init__()
- if config.hidden_size % config.num_attention_heads != 0:
- raise ValueError(
- "The hidden size (%d) is not a multiple of the number of attention "
- "heads (%d)" % (config.hidden_size, config.num_attention_heads))
- # hidden_size必须是num_attention_heads的整数倍,以这里的bert-base为例,
- # 每个attention包含12个head,hidden_size是768,所以每个head大小即attention_head_size=768/12=64
- self.num_attention_heads = config.num_attention_heads
- self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
- # 12*64=768 之所以不用hidden_size,因为有剪枝prune_heads操作,这里代码没有写
-
- self.query = nn.Linear(config.hidden_size, self.all_head_size)
- self.key = nn.Linear(config.hidden_size, self.all_head_size)
- self.value = nn.Linear(config.hidden_size, self.all_head_size)
-
- self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
-
- def transpose_for_scores(self, x):
- # 把hidden_size拆成多个头输出的形状,并且将中间两维转置以进行矩阵相乘;
- # x一般就是模型的输入,也就是我们刚才得到的embedding[128, 32, 768]
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) # [128, 32, 12, 64]
- # 注意这里的写法,x.size()[:-1]的意思是得到x的前两个纬度,shape为[128, 32]
- # print(new_x_shape)就为torch.Size([128, 32, 12, 64]) 这个变量就代表一个shape,它不是一个向量
- x = x.view(*new_x_shape) # [128, 32, 12, 64] 这里是使x变为new_x_shape这个形状
- # *是为什么:多看官方文档 https://pytorch.org/docs/stable/tensors.html#torch.Tensor.view
- return x.permute(0, 2, 1, 3)
-
- def forward(self, hidden_states, attention_mask):
- # attention_mask:[128,1,1,32]就是bert的输入mask扩充了两个纬度
- # 比如y=[6,3],shape为[2],y.unsqueeze(0),它的纬度就是[1,2],值为[[6,3]]
- mixed_query_layer = self.query(hidden_states)
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
-
- query_layer = self.transpose_for_scores(mixed_query_layer) # 这里纬度怎么相乘的可以自己算一下
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
- # (batch_size, num_attention_heads, sequence_length, attention_head_size)
-
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- # [128, 12, 32, 32] (batch_size, num_attention_heads, sequence_length, sequence_length)
-
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- # 除以根号dk
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_scores = attention_scores + attention_mask # 这里的attention_mask是为了对句子进行padding
- # 但输入的mask不是[1, 1, 1, 1, 0, 0]这样的吗,形状[128, 32],按理应该相乘的
- # 但其实attention_mask被动过手脚了 (BertModel函数的extended_attention_mask处)
- # print一下 [[ -0., -0., -0., ..., -10000., -10000., -10000.]]],..
- # [[[ -0., -0., -0., ..., -10000., -10000., -10000.]]],..
- # 将原本为1的部分变为0,而原本为0的部分(即padding)变为一个较大的负数,这样相加就得到了一个较大的负值
- # 这样一来经过softmax操作以后这一项就会变成接近0的数,实现了padding的目的
-
- # Normalize the attention scores to probabilities.
- attention_probs = nn.Softmax(dim=-1)(attention_scores)
-
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
-
- context_layer = torch.matmul(attention_probs, value_layer)
- # (batch_size, num_attention_heads, sequence_length, attention_head_size)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) # [128, 32, 768]
- context_layer = context_layer.view(*new_context_layer_shape) # 多头注意力concat
- return context_layer
-
-
- class BertSelfOutput(nn.Module):
- def __init__(self, config):
- super(BertSelfOutput, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
-
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- # 残差连接 对应公式LayerNorm(s+sublayer(x)) 也就是Add&Norm
- return hidden_states
-
-
- class BertAttention(nn.Module):
- def __init__(self, config):
- super(BertAttention, self).__init__()
- self.self = BertSelfAttention(config)
- self.output = BertSelfOutput(config)
-
- def forward(self, input_tensor, attention_mask): # bert的两个输入
- # input_tensor.size():[128, 32, 768] attention_mask.size():[128, 1, 1, 32]
- self_output = self.self(input_tensor, attention_mask)
- attention_output = self.output(self_output, input_tensor)
- return attention_output
-
-
- class BertIntermediate(nn.Module):
- """
- 全连接+激活 中间层的目的是为了对齐维度
- 对应论文的FFN
- """
- def __init__(self, config):
- super(BertIntermediate, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
- if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
- self.intermediate_act_fn = ACT2FN[config.hidden_act]
- else:
- self.intermediate_act_fn = config.hidden_act
-
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
-
-
- class BertOutput(nn.Module):
- """又是一个全连接+dropout+LayerNorm,还有一个残差连接residual connect"""
- def __init__(self, config):
- super(BertOutput, self).__init__()
- self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
-
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
-
-
- class BertLayer(nn.Module):
- def __init__(self, config):
- super(BertLayer, self).__init__()
- self.attention = BertAttention(config)
- self.intermediate = BertIntermediate(config)
- self.output = BertOutput(config)
-
- def forward(self, hidden_states, attention_mask):
- attention_output = self.attention(hidden_states, attention_mask)
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
-
-
- class BertEncoder(nn.Module):
- def __init__(self, config):
- super(BertEncoder, self).__init__()
- layer = BertLayer(config)
- self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
- # 多层encoder的写法
-
- def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
- all_encoder_layers = []
- for layer_module in self.layer:
- hidden_states = layer_module(hidden_states, attention_mask)
- if output_all_encoded_layers:
- all_encoder_layers.append(hidden_states)
- if not output_all_encoded_layers:
- all_encoder_layers.append(hidden_states)
- return all_encoder_layers
-
-
- class BertPooler(nn.Module):
- """
- 这一层只是简单地取出了句子的第一个token,即[CLS]对应的向量
- pooling还有其他方式,如avgpool,maxpool
- """
- def __init__(self, config):
- super(BertPooler, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- self.activation = nn.Tanh()
-
- def forward(self, hidden_states):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
-
-
- class BertPredictionHeadTransform(nn.Module):
- def __init__(self, config):
- super(BertPredictionHeadTransform, self).__init__()
- self.dense = nn.Linear(config.hidden_size, config.hidden_size)
- if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
- self.transform_act_fn = ACT2FN[config.hidden_act]
- else:
- self.transform_act_fn = config.hidden_act
- self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
-
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.transform_act_fn(hidden_states)
- hidden_states = self.LayerNorm(hidden_states)
- return hidden_states
-
-
- class BertLMPredictionHead(nn.Module):
- def __init__(self, config, bert_model_embedding_weights):
- super(BertLMPredictionHead, self).__init__()
- self.transform = BertPredictionHeadTransform(config)
-
- # The output weights are the same as the input embeddings, but there is
- # an output-only bias for each token.
- self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
- bert_model_embedding_weights.size(0),
- bias=False)
- self.decoder.weight = bert_model_embedding_weights
- self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
-
- def forward(self, hidden_states):
- hidden_states = self.transform(hidden_states)
- hidden_states = self.decoder(hidden_states) + self.bias
- return hidden_states # [batch_size, seq_length, vocab_size],即预测每个句子每个词是什么类别的概率值
-
-
- class BertOnlyMLMHead(nn.Module):
- def __init__(self, config, bert_model_embedding_weights):
- super(BertOnlyMLMHead, self).__init__()
- self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
-
- def forward(self, sequence_output):
- prediction_scores = self.predictions(sequence_output)
- return prediction_scores
-
-
- class BertOnlyNSPHead(nn.Module):
- def __init__(self, config):
- super(BertOnlyNSPHead, self).__init__()
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
-
- def forward(self, pooled_output):
- seq_relationship_score = self.seq_relationship(pooled_output)
- return seq_relationship_score
-
-
- class BertPreTrainingHeads(nn.Module):
- def __init__(self, config, bert_model_embedding_weights):
- super(BertPreTrainingHeads, self).__init__()
- self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
- self.seq_relationship = nn.Linear(config.hidden_size, 2)
-
- def forward(self, sequence_output, pooled_output):
- prediction_scores = self.predictions(sequence_output)
- seq_relationship_score = self.seq_relationship(pooled_output)
- return prediction_scores, seq_relationship_score
-
-
- class BertPreTrainedModel(nn.Module):
- """ An abstract class to handle weights initialization and
- a simple interface for dowloading and loading pretrained models.
- """
- def __init__(self, config, *inputs, **kwargs):
- super(BertPreTrainedModel, self).__init__()
- if not isinstance(config, BertConfig):
- raise ValueError(
- "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
- "To create a model from a Google pretrained model use "
- "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
- self.__class__.__name__, self.__class__.__name__
- ))
- self.config = config
-
- def init_bert_weights(self, module):
- """ Initialize the weights.
- """
- if isinstance(module, (nn.Linear, nn.Embedding)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- elif isinstance(module, BertLayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
-
- @classmethod
- def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
- """
- Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
- Download and cache the pre-trained model file if needed.
- Params:
- pretrained_model_name_or_path: either:
- - a str with the name of a pre-trained model to load selected in the list of:
- . `bert-base-uncased`
- . `bert-large-uncased`
- . `bert-base-cased`
- . `bert-large-cased`
- . `bert-base-multilingual-uncased`
- . `bert-base-multilingual-cased`
- . `bert-base-chinese`
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
- - a path or url to a pretrained model archive containing:
- . `bert_config.json` a configuration file for the model
- . `model.chkpt` a TensorFlow checkpoint
- from_tf: should we load the weights from a locally saved TensorFlow checkpoint
- cache_dir: an optional path to a folder in which the pre-trained models will be cached.
- state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
- *inputs, **kwargs: additional input for the specific Bert class
- (ex: num_labels for BertForSequenceClassification)
- """
- state_dict = kwargs.get('state_dict', None)
- kwargs.pop('state_dict', None)
- cache_dir = kwargs.get('cache_dir', None)
- kwargs.pop('cache_dir', None)
- from_tf = kwargs.get('from_tf', False)
- kwargs.pop('from_tf', None)
-
- if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
- archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
- else:
- archive_file = pretrained_model_name_or_path
- # redirect to the cache, if necessary
- try:
- resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
- except EnvironmentError:
- logger.error(
- "Model name '{}' was not found in model name list ({}). "
- "We assumed '{}' was a path or url but couldn't find any file "
- "associated to this path or url.".format(
- pretrained_model_name_or_path,
- ', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
- archive_file))
- return None
- if resolved_archive_file == archive_file:
- logger.info("loading archive file {}".format(archive_file))
- else:
- logger.info("loading archive file {} from cache at {}".format(
- archive_file, resolved_archive_file))
- tempdir = None
- if os.path.isdir(resolved_archive_file) or from_tf:
- serialization_dir = resolved_archive_file
- else:
- # Extract archive to temp dir
- tempdir = tempfile.mkdtemp()
- logger.info("extracting archive file {} to temp dir {}".format(
- resolved_archive_file, tempdir))
- with tarfile.open(resolved_archive_file, 'r:gz') as archive:
- archive.extractall(tempdir)
- serialization_dir = tempdir
- # Load config
- config_file = os.path.join(serialization_dir, CONFIG_NAME)
- if not os.path.exists(config_file):
- # Backward compatibility with old naming format
- config_file = os.path.join(serialization_dir, BERT_CONFIG_NAME)
- config = BertConfig.from_json_file(config_file)
- logger.info("Model config {}".format(config))
- # Instantiate model.
- model = cls(config, *inputs, **kwargs)
- if state_dict is None and not from_tf:
- weights_path = os.path.join(serialization_dir, WEIGHTS_NAME)
- state_dict = torch.load(weights_path, map_location='cpu')
- if tempdir:
- # Clean up temp dir
- shutil.rmtree(tempdir)
- if from_tf:
- # Directly load from a TensorFlow checkpoint
- weights_path = os.path.join(serialization_dir, TF_WEIGHTS_NAME)
- return load_tf_weights_in_bert(model, weights_path)
- # Load from a PyTorch state_dict
- old_keys = []
- new_keys = []
- for key in state_dict.keys():
- new_key = None
- if 'gamma' in key:
- new_key = key.replace('gamma', 'weight')
- if 'beta' in key:
- new_key = key.replace('beta', 'bias')
- if new_key:
- old_keys.append(key)
- new_keys.append(new_key)
- for old_key, new_key in zip(old_keys, new_keys):
- state_dict[new_key] = state_dict.pop(old_key)
-
- missing_keys = []
- unexpected_keys = []
- error_msgs = []
- # copy state_dict so _load_from_state_dict can modify it
- metadata = getattr(state_dict, '_metadata', None)
- state_dict = state_dict.copy()
- if metadata is not None:
- state_dict._metadata = metadata
-
- def load(module, prefix=''):
- local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
- module._load_from_state_dict(
- state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
- for name, child in module._modules.items():
- if child is not None:
- load(child, prefix + name + '.')
- start_prefix = ''
- if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
- start_prefix = 'bert.'
- load(model, prefix=start_prefix)
- if len(missing_keys) > 0:
- logger.info("Weights of {} not initialized from pretrained model: {}".format(
- model.__class__.__name__, missing_keys))
- if len(unexpected_keys) > 0:
- logger.info("Weights from pretrained model not used in {}: {}".format(
- model.__class__.__name__, unexpected_keys))
- if len(error_msgs) > 0:
- raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
- model.__class__.__name__, "\n\t".join(error_msgs)))
- return model
-
-
- class BertModel(BertPreTrainedModel):
- """BERT model ("Bidirectional Embedding Representations from a Transformer").
- Params:
- config: a BertConfig class instance with the configuration to build a new model
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
- Outputs: Tuple of (encoded_layers, pooled_output)
- `encoded_layers`: controled by `output_all_encoded_layers` argument:
- - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
- of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
- encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
- - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
- to the last attention block of shape [batch_size, sequence_length, hidden_size],
- `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
- classifier pretrained on top of the hidden state associated to the first character of the
- input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = modeling.BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- model = modeling.BertModel(config=config)
- all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config):
- super(BertModel, self).__init__(config)
- self.embeddings = BertEmbeddings(config)
- self.encoder = BertEncoder(config)
- self.pooler = BertPooler(config)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True):
- if attention_mask is None:
- attention_mask = torch.ones_like(input_ids)
- if token_type_ids is None:
- token_type_ids = torch.zeros_like(input_ids)
-
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
-
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and -10000.0 for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
-
- embedding_output = self.embeddings(input_ids, token_type_ids)
- encoded_layers = self.encoder(embedding_output,
- extended_attention_mask,
- output_all_encoded_layers=output_all_encoded_layers)
- sequence_output = encoded_layers[-1] # 即句子对应的向量,也是CLS向量
- pooled_output = self.pooler(sequence_output)
- if not output_all_encoded_layers:
- encoded_layers = encoded_layers[-1]
- return encoded_layers, pooled_output
-
-
- class BertForPreTraining(BertPreTrainedModel):
- """BERT model with pre-training heads.
- This module comprises the BERT model followed by the two pre-training heads:
- - the masked language modeling head, and
- - the next sentence classification head.
- Params:
- config: a BertConfig class instance with the configuration to build a new model.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
- with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
- is only computed for the labels set in [0, ..., vocab_size]
- `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
- with indices selected in [0, 1].
- 0 => next sentence is the continuation, 1 => next sentence is a random sentence.
- Outputs:
- if `masked_lm_labels` and `next_sentence_label` are not `None`:
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
- sentence classification loss.
- if `masked_lm_labels` or `next_sentence_label` is `None`:
- Outputs a tuple comprising
- - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
- - the next sentence classification logits of shape [batch_size, 2].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- model = BertForPreTraining(config)
- masked_lm_logits_scores, seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config):
- super(BertForPreTraining, self).__init__(config)
- self.bert = BertModel(config)
- self.cls = BertPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None, next_sentence_label=None):
- sequence_output, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
- output_all_encoded_layers=False)
- prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
-
- if masked_lm_labels is not None and next_sentence_label is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-1)
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
- next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
- total_loss = masked_lm_loss + next_sentence_loss
- return total_loss
- else:
- return prediction_scores, seq_relationship_score
-
-
- class BertForMaskedLM(BertPreTrainedModel):
- """BERT model with the masked language modeling head.
- This module comprises the BERT model followed by the masked language modeling head.
- Params:
- config: a BertConfig class instance with the configuration to build a new model.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
- with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
- is only computed for the labels set in [0, ..., vocab_size]
- Outputs:
- if `masked_lm_labels` is not `None`:
- Outputs the masked language modeling loss.
- if `masked_lm_labels` is `None`:
- Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- model = BertForMaskedLM(config)
- masked_lm_logits_scores = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config):
- super(BertForMaskedLM, self).__init__(config)
- self.bert = BertModel(config)
- self.cls = BertOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, masked_lm_labels=None):
- sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask,
- output_all_encoded_layers=False)
- prediction_scores = self.cls(sequence_output)
-
- if masked_lm_labels is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-1)
- masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
- return masked_lm_loss
- else:
- return prediction_scores
-
-
- class BertForNextSentencePrediction(BertPreTrainedModel):
- """BERT model with next sentence prediction head.
- This module comprises the BERT model followed by the next sentence classification head.
- Params:
- config: a BertConfig class instance with the configuration to build a new model.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
- with indices selected in [0, 1].
- 0 => next sentence is the continuation, 1 => next sentence is a random sentence.
- Outputs:
- if `next_sentence_label` is not `None`:
- Outputs the total_loss which is the sum of the masked language modeling loss and the next
- sentence classification loss.
- if `next_sentence_label` is `None`:
- Outputs the next sentence classification logits of shape [batch_size, 2].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- model = BertForNextSentencePrediction(config)
- seq_relationship_logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config):
- super(BertForNextSentencePrediction, self).__init__(config)
- self.bert = BertModel(config)
- self.cls = BertOnlyNSPHead(config)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, next_sentence_label=None):
- _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask,
- output_all_encoded_layers=False)
- seq_relationship_score = self.cls( pooled_output)
-
- if next_sentence_label is not None:
- loss_fct = CrossEntropyLoss(ignore_index=-1)
- next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
- return next_sentence_loss
- else:
- return seq_relationship_score
-
-
- class BertForSequenceClassification(BertPreTrainedModel):
- """BERT model for classification.
- This module is composed of the BERT model with a linear layer on top of
- the pooled output.
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- `num_labels`: the number of classes for the classifier. Default = 2.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
- with indices selected in [0, ..., num_labels].
- Outputs:
- if `labels` is not `None`:
- Outputs the CrossEntropy classification loss of the output with the labels.
- if `labels` is `None`:
- Outputs the classification logits of shape [batch_size, num_labels].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- num_labels = 2
- model = BertForSequenceClassification(config, num_labels)
- logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config, num_labels):
- super(BertForSequenceClassification, self).__init__(config)
- self.num_labels = num_labels
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, num_labels)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
- _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
-
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- return loss
- else:
- return logits
-
-
- class BertForMultipleChoice(BertPreTrainedModel):
- """BERT model for multiple choice tasks.
- This module is composed of the BERT model with a linear layer on top of
- the pooled output.
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- `num_choices`: the number of classes for the classifier. Default = 2.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, num_choices, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length]
- with the token types indices selected in [0, 1]. Type 0 corresponds to a `sentence A`
- and type 1 corresponds to a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, num_choices, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
- with indices selected in [0, ..., num_choices].
- Outputs:
- if `labels` is not `None`:
- Outputs the CrossEntropy classification loss of the output with the labels.
- if `labels` is `None`:
- Outputs the classification logits of shape [batch_size, num_labels].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[[31, 51, 99], [15, 5, 0]], [[12, 16, 42], [14, 28, 57]]])
- input_mask = torch.LongTensor([[[1, 1, 1], [1, 1, 0]],[[1,1,0], [1, 0, 0]]])
- token_type_ids = torch.LongTensor([[[0, 0, 1], [0, 1, 0]],[[0, 1, 1], [0, 0, 1]]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- num_choices = 2
- model = BertForMultipleChoice(config, num_choices)
- logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config, num_choices):
- super(BertForMultipleChoice, self).__init__(config)
- self.num_choices = num_choices
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, 1)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
- flat_input_ids = input_ids.view(-1, input_ids.size(-1))
- flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
- flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
- _, pooled_output = self.bert(flat_input_ids, flat_token_type_ids, flat_attention_mask, output_all_encoded_layers=False)
- pooled_output = self.dropout(pooled_output)
- logits = self.classifier(pooled_output)
- reshaped_logits = logits.view(-1, self.num_choices)
-
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(reshaped_logits, labels)
- return loss
- else:
- return reshaped_logits
-
-
- class BertForTokenClassification(BertPreTrainedModel):
- """BERT model for token-level classification.
- This module is composed of the BERT model with a linear layer on top of
- the full hidden state of the last layer.
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- `num_labels`: the number of classes for the classifier. Default = 2.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
- with indices selected in [0, ..., num_labels].
- Outputs:
- if `labels` is not `None`:
- Outputs the CrossEntropy classification loss of the output with the labels.
- if `labels` is `None`:
- Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- num_labels = 2
- model = BertForTokenClassification(config, num_labels)
- logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config, num_labels):
- super(BertForTokenClassification, self).__init__(config)
- self.num_labels = num_labels
- self.bert = BertModel(config)
- self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.classifier = nn.Linear(config.hidden_size, num_labels)
- self.apply(self.init_bert_weights)
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None):
- sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
- sequence_output = self.dropout(sequence_output)
- logits = self.classifier(sequence_output)
-
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- # Only keep active parts of the loss
- if attention_mask is not None:
- active_loss = attention_mask.view(-1) == 1
- active_logits = logits.view(-1, self.num_labels)[active_loss]
- active_labels = labels.view(-1)[active_loss]
- loss = loss_fct(active_logits, active_labels)
- else:
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
- return loss
- else:
- return logits
-
-
- class BertForQuestionAnswering(BertPreTrainedModel):
- """BERT model for Question Answering (span extraction).
- This module is composed of the BERT model with a linear layer on top of
- the sequence output that computes start_logits and end_logits
- Params:
- `config`: a BertConfig class instance with the configuration to build a new model.
- Inputs:
- `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
- with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
- `extract_features.py`, `run_classifier.py` and `run_squad.py`)
- `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
- types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
- a `sentence B` token (see BERT paper for more details).
- `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
- selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
- input sequence length in the current batch. It's the mask that we typically use for attention when
- a batch has varying length sentences.
- `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
- Positions are clamped to the length of the sequence and position outside of the sequence are not taken
- into account for computing the loss.
- `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
- Positions are clamped to the length of the sequence and position outside of the sequence are not taken
- into account for computing the loss.
- Outputs:
- if `start_positions` and `end_positions` are not `None`:
- Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
- if `start_positions` or `end_positions` is `None`:
- Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
- position tokens of shape [batch_size, sequence_length].
- Example usage:
- ```python
- # Already been converted into WordPiece token ids
- input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
- input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
- token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])
- config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
- num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)
- model = BertForQuestionAnswering(config)
- start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
- ```
- """
- def __init__(self, config):
- super(BertForQuestionAnswering, self).__init__(config)
- self.bert = BertModel(config)
- # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version
- # self.dropout = nn.Dropout(config.hidden_dropout_prob)
- self.qa_outputs = nn.Linear(config.hidden_size, 2)
- self.apply(self.init_bert_weights)
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None):
- sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
- logits = self.qa_outputs(sequence_output)
- start_logits, end_logits = logits.split(1, dim=-1)
- start_logits = start_logits.squeeze(-1)
- end_logits = end_logits.squeeze(-1)
- if start_positions is not None and end_positions is not None:
- # If we are on multi-GPU, split add a dimension
- if len(start_positions.size()) > 1:
- start_positions = start_positions.squeeze(-1)
- if len(end_positions.size()) > 1:
- end_positions = end_positions.squeeze(-1)
- # sometimes the start/end positions are outside our model inputs, we ignore these terms
- ignored_index = start_logits.size(1)
- start_positions.clamp_(0, ignored_index)
- end_positions.clamp_(0, ignored_index)
- loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
- start_loss = loss_fct(start_logits, start_positions)
- end_loss = loss_fct(end_logits, end_positions)
- total_loss = (start_loss + end_loss) / 2
- return total_loss
- else:
- return start_logits, end_logits

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。