赞
踩
当一个Vue实例创建时,Vue会遍历data中的属性,用 Object.defineProperty(vue3.0使用proxy )将它们转为 getter/setter,并且在内部追踪相关依赖,在属性被访问和修改时通知变化。 每个组件实例都有相应的 watcher 程序实例,它会在组件渲染的过程中把属性记录为依赖,之后当依赖项的setter被调用时,会通知watcher重新计算,从而致使它关联的组件得以更新。
1、数据驱动和响应式原理:Vue通过数据劫持技术来监控数据变化,从而实现响应式更新。它使用Object.defineProperty方法来实现对属性的拦截,当数据被更改时,会触发setter方法中定义的回调函数,进而触发视图的更新
2、组件化:Vue的一个重要特性是组件化,允许开发者将页面拆分成可复用的组件,每个组件都包含属于自己的HTML、CSS和JavaScript,用于渲染网页中相应的部分。组件之间可以相互嵌套和通信,从而实现复杂的前端应用。
3、模板解析:Vue中的模板是通过解析实现的。在解析过程中,Vue会将模板转换成一个抽象语法树(AST),然后用AST生成可执行的render函数。这样就避免了频繁进行DOM操作的问题,提高了应用的渲染性能。
4、虚拟DOM:Vue使用虚拟DOM来提高渲染性能。虚拟DOM是一个轻量级的JavaScript对象,它用类似于真实DOM的形式来描述DOM节点。当数据发生改变时,Vue会通过比对新旧虚拟DOM树,然后以最小的代价重新渲染发生变化的节点到浏览器中。
Vue.js 是采用数据劫持结合发布者-订阅者模式的方式,通过Object.defineProperty()来劫持各个属性的setter,getter,在数据变动时发布消息给订阅者,触发相应的监听回调。主要分为以下几个步骤:
1、需要observe的数据对象进行递归遍历,包括子属性对象的属性,都加上setter和getter这样的话,给这个对象的某个值赋值,就会触发setter,那么就能监听到了数据变化
2、compile解析模板指令,将模板中的变量替换成数据,然后初始化渲染页面视图,并将每个指令对应的节点绑定更新函数,添加监听数据的订阅者,一旦数据有变动,收到通知,更新视图
3、Watcher订阅者是Observer和Compile之间通信的桥梁,主要做的事情是: ①在自身实例化时往属性订阅器(dep)里面添加自己 ②自身必须有一个update()方法 ③待属性变动dep.notice()通知时,能调用自身的update()方法,并触发Compile中绑定的回调,则功成身退。
4、MVVM作为数据绑定的入口,整合Observer、Compile和Watcher三者,通过Observer来监听自己的model数据变化,通过Compile来解析编译模板指令,最终利用Watcher搭起Observer和Compile之间的通信桥梁,达到数据变化 -> 视图更新;视图交互变化(input) -> 数据model变更的双向绑定效果。
对于数组而言,大部分操作都是拦截不到的,只是 Vue 内部通过重写函数的方式解决了这个问题。
在 Vue3.0 中已经不使用这种方式了,而是通过使用 Proxy 对对象进行代理,从而实现数据劫持,唯一的缺点是兼容性的问题,因为 Proxy 是 ES6 的语法。
1、MVC
MVC 通过分离 Model、View 和 Controller 的方式来组织代码结构。其中 View 负责页面的显示逻辑,Model 负责存储页面的业务数据,以及对相应数据的操作。并且 View 和 Model 应用了观察者模式,当 Model 层发生改变的时候它会通知有关 View 层更新页面。Controller 层是 View 层和 Model 层的纽带,它主要负责用户与应用的响应操作,当用户与页面产生交互的时候,Controller 中的事件触发器就开始工作了,通过调用 Model 层,来完成对 Model 的修改,然后 Model 层再去通知 View 层更新。
2、MVVM
MVVM 分为 Model、View、ViewModel:
Model和View并无直接关联,而是通过ViewModel来进行联系的,Model和ViewModel之间有着双向数据绑定的联系。因此当Model中的数据改变时会触发View层的刷新,View中由于用户交互操作而改变的数据也会在Model中同步。
这种模式实现了 Model和View的数据自动同步,因此开发者只需要专注于数据的维护操作即可,而不需要自己操作DOM。
3、MVP
MVP 模式与 MVC 唯一不同的在于 Presenter 和 Controller。MVP 的模式通过使用 Presenter 来实现对 View 层和 Model 层的解耦。MVC 中的Controller 只知道 Model 的接口,因此它没有办法控制 View 层的更新,MVP 模式中,View 层的接口暴露给了 Presenter 因此可以在 Presenter 中将 Model 的变化和 View 的变化绑定在一起,以此来实现 View 和 Model 的同步更新。这样就实现了对 View 和 Model 的解耦。
对于Computed:
对于Watch:
不同点:
computed: 计算属性是基于它们的依赖进行缓存的,只有在它的相关依赖发生改变时才会重新求值;
method 调用总会执行该函数。
slot又名插槽,是Vue的内容分发机制,组件内部的模板引擎使用slot元素作为承载分发内容的出口。插槽slot是子组件的一个模板标签元素,而这一个标签元素是否显示,以及怎么显示是由父组件决定的。slot又分三类,默认插槽,具名插槽和作用域插槽。
例如,在显示金额,给商品价格添加单位
<li>商品价格:{{item.price | filterPrice}}</li>
filters: {
filterPrice (price) {
return price ? ('¥' + price) : '--'
}
}
在Vue中,可以用keep-alive来缓存页面,当组件在keep-alive内被切换时组件的activated、deactivated这两个生命周期钩子函数会被执行。
.stop:等同于 JavaScript 中的 event.stopPropagation() ,防止事件冒泡;
.prevent :等同于 JavaScript 中的 event.preventDefault()
,防止执行预设的行为(如果事件可取消,则取消该事件,而不停止事件的进一步传播);
.self :只会触发自己范围内的事件,不包含子元素;
.once :只会触发一次。
手段:v-if是动态的向DOM树内添加或者删除DOM元素;v-show是通过设置DOM元素的display样式属性控制显隐;
性能消耗:v-if有更高的切换消耗;v-show有更高的初始渲染消耗;
(1)作用在表单元素上
动态绑定了 input 的 value 指向了 messgae 变量,并且在触发 input 事件的时候去动态把 message设置为目标值:
<input v-model="sth" />
// 等同于
<input
v-bind:value="message"
v-on:input="message=$event.target.value"
>
//$event 指代当前触发的事件对象;
//$event.target 指代当前触发的事件对象的dom;
//$event.target.value 就是当前dom的value值;
//在@input方法中,value => sth;
//在:value中,sth => value;
(2)作用在组件上
在自定义组件中,v-model 默认会利用名为 value 的 prop和名为 input 的事件
**本质是一个父子组件通信的语法糖,通过prop和$.emit实现。**因此父组件 v-model 语法糖本质上可以修改为:
// 父组件
<aa-input v-model="aa"></aa-input>
// 等价于
<aa-input v-bind:value="aa" v-on:input="aa=$event.target.value"></aa-input>
// 子组件:
<input v-bind:value="aa" v-on:input="onmessage"></aa-input>
props:{value:aa,}
methods:{
onmessage(e){
$emit('input',e.target.value)
}
}
JavaScript中的对象是引用类型的数据,当多个实例引用同一个对象时,只要一个实例对这个对象进行操作,其他实例中的数据也会发生变化。
而在Vue中,更多的是想要复用组件,那就需要每个组件都有自己的数据,这样组件之间才不会相互干扰。
所以组件的数据不能写成对象的形式,而是要写成函数的形式。数据以函数返回值的形式定义,这样当每次复用组件的时候,就会返回一个新的data,也就是说每个组件都有自己的私有数据空间,它们各自维护自己的数据,不会干扰其他组件的正常运行。
如果需要在组件切换的时候,保存一些组件的状态防止多次渲染,就可以使用 keep-alive 组件包裹需要保存的组件。
主要流程:
1、判断组件 name ,不在 include 或者在 exclude 中,直接返回 vnode,说明该组件不被缓存。
2、获取组件实例 key ,如果有获取实例的 key,否则重新生成。
3、key生成规则,cid +“∶∶”+ tag ,仅靠cid是不够的,因为相同的构造函数可以注册为不同的本地组件。
4、如果缓存对象内存在,则直接从缓存对象中获取组件实例给 vnode ,不存在则添加到缓存对象中。 5.最大缓存数量,当缓存组件数量超过 max 值时,清除 keys 数组内第一个组件。
Vue 的 nextTick 其本质是对 JavaScript 执行原理 EventLoop 的一种应用。
nextTick 的核心是利用了如 Promise 、MutationObserver、setImmediate、setTimeout的原生 JavaScript 方法来模拟对应的微/宏任务的实现,本质是为了利用 JavaScript 的这些异步回调任务队列来实现 Vue 框架中自己的异步回调队列。
对象属性 已经成功添加,但是视图并未刷新。这是因为在Vue实例创建时,新添加的属性并未声明,因此就没有被Vue转换为响应式的属性,自然就不会触发视图的更新,这时就需要使用Vue的全局 api $set()
在Vue中,对响应式处理利用的是Object.defineProperty对数据进行拦截,而这个方法并不能监听到数组内部变化,数组长度变化,数组的截取变化等,所以需要对这些操作进行hack,让Vue能监听到其中的变化。
简单来说就是,重写了数组中的那些原生方法,首先获取到这个数组的__ob__,也就是它的Observer对象,如果有新的值,就调用observeArray继续对新的值观察变化(也就是通过target__proto__ == arrayMethods来改变了数组实例的型),然后手动调用notify,通知渲染watcher,执行update
概念:
vue的模版编译过程主要如下:template -> ast -> render函数
vue 在模版编译版本的码中会执行 compileToFunctions 将template转化为render函数:
// 将模板编译为render函数
const { render, staticRenderFns } = compileToFunctions(template,options//省略}, this)
CompileToFunctions中的主要逻辑如下∶
(1)调用parse方法将template转化为ast(抽象语法树)
(2)对静态节点做优化
(3)生成代码
不会立即同步执行重新渲染。Vue 实现响应式并不是数据发生变化之后 DOM 立即变化,而是按一定的策略进行 DOM 的更新。Vue 在更新 DOM 时是异步执行的。只要侦听到数据变化, Vue 将开启一个队列,并缓冲在同一事件循环中发生的所有数据变更。
如果同一个watcher被多次触发,只会被推入到队列中一次。这种在缓冲时去除重复数据对于避免不必要的计算和 DOM 操作是非常重要的。然后,在下一个的事件循环tick中,Vue 刷新队列并执行实际(已去重的)工作。
(1)mixin 和 extends
mixin 和 extends均是用于合并、拓展组件的,两者均通过 mergeOptions 方法实现合并。
有的情况下,你需要对普通 DOM 元素进行底层操作,这时候就会用到自定义指令。
(1)自定义指令基本内容
bind:只调用一次,指令第一次绑定到元素时调用。在这里可以进行一次性的初始化设置。
el:绑定元素
name
value
(2)使用场景
鼠标聚焦
下拉菜单
相对时间转换
滚动动画
子组件不可以直接改变父组件的数据。这样做主要是为了维护父子组件的单向数据流。每次父级组件发生更新时,子组件中所有的 prop 都将会刷新为最新的值。如果这样做了,Vue 会在浏览器的控制台中发出警告。这是为了防止意外的改变父组件状态,使得应用的数据流变得难以理解,导致数据流混乱。如果破坏了单向数据流,当应用复杂时,debug 的成本会非常高。
只能通过 $emit 派发一个自定义事件,父组件接收到后,由父组件修改。
在初始化 Vue 的每个组件时,会对组件的 data 进行初始化,就会将由普通对象变成响应式对象,在这个过程中便会进行依赖收集的相关逻辑。
1、数据响应化:在Vue实例创建时,Vue会将data选项中的属性转化为getter/setter,使数据变得“响应式”。这意味着每当数据发生变化时,Vue能够知道并作出相应的反应。
2、Observer(观察者):Vue使用Observer来监听数据对象的变化。Observer将遍历data中的每个属性,并使用Object.defineProperty将这些属性转化为getter/setter。
3、Dep(依赖收集器):每个属性都对应一个Dep对象,这个对象内部维护了一个数组,用于存储当前属性所有的观察者(Watcher)。当数据变化时,Dep会通知所有观察者进行更新。
4、Watcher(观察者):Watcher是Vue中的一个重要概念,它负责收集依赖并执行更新。当Vue需要渲染一个组件或执行一个计算属性时,它会创建一个Watcher对象。这个Watcher对象会把自己添加到它所依赖的数据的Dep中。
5、依赖收集:当Watcher创建时,它会执行组件的render函数(或计算属性的getter函数)。在这个过程中,会访问到组件的响应式数据,从而触发数据的getter。在getter中,Dep会收集当前的Watcher,将其添加到自己的数组中,这样数据就知道有哪些Watcher依赖于它。
6、通知更新:当数据发生变化时(即setter被调用),它会通知Dep,Dep再通知所有依赖于它的Watcher进行更新。Watcher随后会重新执行组件的render函数或计算属性的getter函数,从而更新视图。
总结来说,Vue通过Observer将数据转化为响应式,通过Dep来收集和管理依赖,并通过Watcher来执行更新。这种机制使得Vue能够高效地处理数据变化并更新视图。
相似之处:
不同之处 :
1、数据流
Vue默认支持数据双向绑定,而React一直提倡单向数据流
2、虚拟DOM
3、组件化
React与Vue最大的不同是模板的编写。
具体来讲:React中render函数是支持闭包特性的,所以import的组件在render中可以直接调用。但是在Vue中,由于模板中使用的数据都必须挂在 this 上进行一次中转,所以 import 一个组件完了之后,还需要在 components 中再声明下。
4、监听数据变化的实现原理不同
相同点: assets 和 static 两个都是存放静态资源文件。项目中所需要的资源文件图片,字体图标,样式文件等都可以放在这两个文件下,这是相同点
不相同点:assets 中存放的静态资源文件在项目打包时,也就是运行 npm run build 时会将 assets 中放置的静态资源文件进行打包上传,所谓打包简单点可以理解为压缩体积,代码格式化。而压缩后的静态资源文件最终也都会放置在 static 文件中跟着 index.html 一同上传至服务器。static 中放置的静态资源文件就不会要走打包压缩格式化等流程,而是直接进入打包好的目录,直接上传至服务器。因为避免了压缩直接进行上传,在打包时会提高一定的效率,但是 static 中的资源文件由于没有进行压缩等操作,所以文件的体积也就相对于 assets 中打包后的文件提交较大点。在服务器中就会占据更大的空间。
vue中的模板template无法被浏览器解析并渲染,因为这不属于浏览器的标准,不是正确的HTML语法,所有需要将template转化成一个JavaScript函数,这样浏览器就可以执行这一个函数并渲染出对应的HTML元素,就可以让视图跑起来了,这一个转化的过程,就成为模板编译。模板编译又分三个阶段,解析parse,优化optimize,生成generate,最终生成可执行函数render。
(1)编码阶段
尽量减少data中的数据,data中的数据都会增加getter和setter,会收集对应的watcher
v-if和v-for不能连用
如果需要使用v-for给每项元素绑定事件时使用事件代理
SPA 页面采用keep-alive缓存组件
在更多的情况下,使用v-if替代v-show
key保证唯一
使用路由懒加载、异步组件
防抖、节流
第三方模块按需导入
长列表滚动到可视区域动态加载
图片懒加载
(2)SEO优化
预渲染
服务端渲染SSR
(3)打包优化
压缩代码
Tree Shaking/Scope Hoisting
使用cdn加载第三方模块
多线程打包happypack
splitChunks抽离公共文件
sourceMap优化
优点:
用户体验好、快,内容的改变不需要重新加载整个页面,避免了不必要的跳转和重复渲染;
基于上面一点,SPA 相对对服务器压力小;
前后端职责分离,架构清晰,前端进行交互逻辑,后端负责数据处理;
缺点:
初次加载耗时多:为实现单页 Web 应用功能及显示效果,需要在加载页面的时候将 JavaScript、CSS 统一加载,部分页面按需加载;
前进后退路由管理:由于单页应用在一个页面中显示所有的内容,所以不能使用浏览器的前进后退功能,所有的页面切换需要自己建立堆栈管理;
SEO 难度较大:由于所有的内容都在一个页面中动态替换显示,所以在 SEO 上其有着天然的弱势。
Vue 实例有⼀个完整的⽣命周期,也就是从开始创建、初始化数据、编译模版、挂载Dom -> 渲染、更新 -> 渲染、卸载 等⼀系列过程,称这是Vue的⽣命周期。
1、beforeCreate(创建前):数据观测和初始化事件还未开始,此时 data 的响应式追踪、event/watcher 都还没有被设置,也就是说不能访问到data、computed、watch、methods上的方法和数据。
2、created**(创建后)** :实例创建完成,实例上配置的 options 包括 data、computed、watch、methods 等都配置完成,但是此时渲染得节点还未挂载到 DOM,所以不能访问到
e
l
属性。
3
、
b
e
f
o
r
e
M
o
u
n
t
(挂载前):在挂载开始之前被调用,相关的
r
e
n
d
e
r
函数首次被调用。实例已完成以下的配置:编译模板,把
d
a
t
a
里面的数据和模板生成
h
t
m
l
。此时还没有挂载
h
t
m
l
到页面上。
4
、
m
o
u
n
t
e
d
(挂载后):在
e
l
被新创建的
v
m
.
el 属性。 3、beforeMount(挂载前):在挂载开始之前被调用,相关的render函数首次被调用。实例已完成以下的配置:编译模板,把data里面的数据和模板生成html。此时还没有挂载html到页面上。 4、mounted(挂载后):在el被新创建的 vm.
el属性。3、beforeMount(挂载前):在挂载开始之前被调用,相关的render函数首次被调用。实例已完成以下的配置:编译模板,把data里面的数据和模板生成html。此时还没有挂载html到页面上。4、mounted(挂载后):在el被新创建的vm.el 替换,并挂载到实例上去之后调用。实例已完成以下的配置:用上面编译好的html内容替换el属性指向的DOM对象。完成模板中的html渲染到html 页面中。此过程中进行ajax交互。
5、beforeUpdate(更新前):响应式数据更新时调用,此时虽然响应式数据更新了,但是对应的真实 DOM 还没有被渲染。
6、updated(更新后) :在由于数据更改导致的虚拟DOM重新渲染和打补丁之后调用。此时 DOM 已经根据响应式数据的变化更新了。调用时,组件 DOM已经更新,所以可以执行依赖于DOM的操作。然而在大多数情况下,应该避免在此期间更改状态,因为这可能会导致更新无限循环。该钩子在服务器端渲染期间不被调用。
7、beforeDestroy(销毁前):实例销毁之前调用。这一步,实例仍然完全可用,this 仍能获取到实例。
8、destroyed(销毁后):实例销毁后调用,调用后,Vue 实例指示的所有东西都会解绑定,所有的事件监听器会被移除,所有的子实例也会被销毁。该钩子在服务端渲染期间不被调用。
加载渲染过程:
1.父组件 beforeCreate
2.父组件 created
3.父组件 beforeMount
4.子组件 beforeCreate
5.子组件 created
6.子组件 beforeMount
7.子组件 mounted
8.父组件 mounted
更新过程:
1.父组件 beforeUpdate
2.子组件 beforeUpdate
3.子组件 updated
4.父组件 updated
销毁过程:
1.父组件 beforeDestroy
2.子组件 beforeDestroy
3.子组件 destroyed
4.父组件 destoryed
我们可以在钩子函数 created、beforeMount、mounted 中进行调用,因为在这三个钩子函数中,data 已经创建,可以将服务端端返回的数据进行赋值。
推荐在 created 钩子函数中调用异步请求,因为在 created 钩子函数中调用异步请求有以下优点:
keep-alive是 Vue 提供的一个内置组件,用来对组件进行缓存——在组件切换过程中将状态保留在内存中,防止重复渲染DOM。
如果为一个组件包裹了 keep-alive,那么它会多出两个生命周期:deactivated、activated。同时,beforeDestroy 和 destroyed 就不会再被触发了,因为组件不会被真正销毁。
当组件被换掉时,会被缓存到内存中、触发 deactivated 生命周期;当组件被切回来时,再去缓存里找这个组件、触发 activated钩子函数
父组件通过props向子组件传递数据,子组件通过$emit和父组件通信
eventBus事件总线适用于父子组件、非父子组件等之间的通信,使用步骤如下
(1)创建事件中心管理组件之间的通信
// event-bus.js
import Vue from 'vue'
export const EventBus = new Vue()
(2)发送事件
假设有两个兄弟组件firstCom和secondCom:
<template>
<div>
<first-com></first-com>
<second-com></second-com>
</div>
</template>
<script>
import firstCom from './firstCom.vue'
import secondCom from './secondCom.vue'
export default {
components: { firstCom, secondCom }
}
</script>
// 在firstCom组件中发送事件:
EventBus.$emit('addition', {
num:this.num++
})
// 在secondCom组件中发送事件:
EventBus.$on('addition', param => {
this.count = this.count + param.num;
})
这种方式就是Vue中的依赖注入,该方法用于父子组件之间的通信。当然这里所说的父子不一定是真正的父子,也可以是祖孙组件,在层数很深的情况下,可以使用这种方法来进行传值。就不用一层一层的传递了。
provide / inject是Vue提供的两个钩子,和data、methods是同级的。并且provide的书写形式和data一样。
在父组件中:
provide() {
return {
num: this.num
};
}
在子组件中:
inject: ['num']
这种方式也是实现父子组件之间的通信
ref: 这个属性用在子组件上,它的引用就指向了子组件的实例。可以通过实例来访问组件的数据和方法。
非懒加载:
import List from '@/components/list.vue'
const router = new VueRouter({
routes: [
{ path: '/list', component: List }
]
})
(1)方案一(常用):使用箭头函数+import动态加载
const List = () => import('@/components/list.vue')
const router = new VueRouter({
routes: [
{ path: '/list', component: List }
]
})
(2)方案二:使用箭头函数+require动态加载
const router = new Router({
routes: [
{
path: '/list',
component: resolve => require(['@/components/list'], resolve)
}
]
})
(3)方案三:使用webpack的require.ensure技术,也可以实现按需加载。 这种情况下,多个路由指定相同的chunkName,会合并打包成一个js文件
// r就是resolve
const List = r => require.ensure([], () => r(require('@/components/list')), 'list');
// 路由也是正常的写法 这种是官方推荐的写的 按模块划分懒加载
const router = new Router({
routes: [
{
path: '/list',
component: List,
name: 'list'
}
]
}))
Vue-Router有两种模式:hash模式和history模式。默认的路由模式是hash模式。
简介: hash模式是开发中默认的模式,它的URL带着一个#,例如:http://www.abc.com/#/vue,它的hash值就是#/vue
。
特点:hash值会出现在URL里面,但是不会出现在HTTP请求中,对后端完全没有影响。所以改变hash值,不会重新加载页面。这种模式的浏览器支持度很好,低版本的IE浏览器也支持这种模式。hash路由被称为是前端路由,已经成为SPA(单页面应用)的标配。
原理: hash模式的主要原理就是onhashchange()事件:
window.onhashchange = function(event){
console.log(event.oldURL, event.newURL);
let hash = location.hash.slice(1);
}
使用onhashchange()事件的好处就是,在页面的hash值发生变化时,无需向后端发起请求,window就可以监听事件的改变,并按规则加载相应的代码。除此之外,hash值变化对应的URL都会被浏览器记录下来,这样浏览器就能实现页面的前进和后退。虽然是没有请求后端服务器,但是页面的hash值和对应的URL关联起来了。
简介: history模式的URL中没有#,它使用的是传统的路由分发模式,即用户在输入一个URL时,服务器会接收这个请求,并解析这个URL,然后做出相应的逻辑处理。
特点: 当使用history模式时,URL就像这样:http://abc.com/user/id。相比hash模式更加好看。但是,history模式需要后台配置支持。如果后台没有正确配置,访问时会返回404。
API: history api可以分为两大部分,切换历史状态和修改历史状态:
调用 history.pushState() 相比于直接修改 hash,存在以下优势:
// 监听,当路由发生变化的时候执行
watch: {
$route: {
handler: function(val, oldVal){
console.log(val);
},
// 深度观察监听
deep: true
}
},
window.location.hash 的值可读可写,读取来判断状态是否改变,写入时可以在不重载网页的前提下,添加一条历史访问记录。
$route 是“路由信息对象”,包括 path,params,hash,query,fullPath,matched,name 等路由信息参数
$router 是“路由实例”对象包括了路由的跳转方法,钩子函数等。
1.全局路由钩子
router.beforeEach 全局前置守卫 进入路由之前
router.beforeResolve 全局解析守卫(2.5.0+)在 beforeRouteEnter 调用之后调用
router.afterEach 全局后置钩子 进入路由之后
2.单个路由独享钩子
beforeEnter
3.组件内钩子
beforeRouteUpdate、beforeRouteEnter、beforeRouteLeave
beforeRouteEnter∶ 进入组件前触发
beforeRouteUpdate∶ 当前地址改变并且改组件被复用时触发,举例来说,带有动态参数的路径foo/∶id,在 /foo/1 和 /foo/2 之间跳转的时候,由于会渲染同样的foa组件,这个钩子在这种情况下就会被调用
beforeRouteLeave∶ 离开组件被调用
1.完整的路由导航解析流程(不包括其他生命周期)
触发进入其他路由。
调用要离开路由的组件守卫beforeRouteLeave
调用局前置守卫∶ beforeEach
在重用的组件里调用 beforeRouteUpdate
调用路由独享守卫 beforeEnter。
解析异步路由组件。
在将要进入的路由组件中调用 beforeRouteEnter
调用全局解析守卫 beforeResolve
导航被确认。
调用全局后置钩子的 afterEach 钩子。
触发DOM更新(mounted)。
执行beforeRouteEnter 守卫中传给 next 的回调函数
用法:query要用path来引入,params要用name来引入,接收参数都是类似的,分别是 this.$route.query.name
和 this.$route.params.name
。
url地址显示:query更加类似于ajax中get传参,params则类似于post,说的再简单一点,前者在浏览器地址栏中显示参数,后者则不显示
SPA极大地提升了用户体验,它允许页面在不刷新的情况下更新页面内容,使内容的切换更加流畅。但是在 SPA 诞生之初,人们并没有考虑到“定位”这个问题——在内容切换前后,页面的 URL 都是一样的,这就带来了两个问题:
为了解决这个问题,前端路由出现了。
前端路由可以帮助我们在仅有一个页面的情况下,“记住”用户当前走到了哪一步——为 SPA 中的各个视图匹配一个唯一标识。这意味着用户前进、后退触发的新内容,都会映射到不同的 URL 上去。此时即便他刷新页面,因为当前的 URL 可以标识出他所处的位置,因此内容也不会丢失。
那么如何实现这个目的呢?首先要解决两个问题:
作为前端,可以提供这样的解决思路:
Vuex 是一个专为 Vue.js 应用程序开发的状态管理模式。每一个 Vuex 应用的核心就是 store(仓库)。“store” 基本上就是一个容器,它包含着你的应用中大部分的状态 ( state )。
1、Vue Components∶ Vue组件。HTML页面上,负责接收用户操作等交互行为,执行dispatch方法触发对应action进行回应。
2、dispatch∶操作行为触发方法,是唯一能执行action的方法。
3、actions∶ 操作行为处理模块。负责处理Vue Components接收到的所有交互行为。包含同步/异步操作,支持多个同名方法,按照注册的顺序依次触发。向后台API请求的操作就在这个模块中进行,包括触发其他action以及提交mutation的操作。该模块提供了Promise的封装,以支持action的链式触发。
4、commit∶状态改变提交操作方法。对mutation进行提交,是唯一能执行mutation的方法。
5、mutations∶状态改变操作方法。是Vuex修改state的唯一推荐方法,其他修改方式在严格模式下将会报错。该方法只能进行同步操作,且6、方法名只能全局唯一。操作之中会有一些hook暴露出来,以进行state的监控等。
7、state∶ 页面状态管理容器对象。集中存储Vuecomponents中data对象的零散数据,全局唯一,以进行统一的状态管理。页面显示所需的数据从该对象中进行读取,利用Vue的细粒度数据响应机制来进行高效的状态更新。
8、getters∶ state对象读取方法。图中没有单独列出该模块,应该被包含在了render中,Vue Components通过该方法读取全局state对象。
mutation中的操作是一系列的同步函数,用于修改state中的变量的的状态。当使用vuex时需要通过commit来提交需要操作的内容。mutation 非常类似于事件:每个 mutation 都有一个字符串的 事件类型 (type) 和 一个 回调函数 (handler)。这个回调函数就是实际进行状态更改的地方。
而Action类似于mutation,不同点在于:
刷新页面时vuex存储的值会丢失,localstorage不会。
state => 基本数据(数据源存放地)
getters => 从基本数据派生出来的数据
mutations => 提交更改数据的方法,同步
actions => 像一个装饰器,包裹mutations,使之可以异步。
modules => 模块化Vuex
使用mapGetters辅助函数, 利用对象展开运算符将getter混入computed 对象中
import {mapGetters} from 'vuex'
export default{
computed:{
...mapGetters(['total','discountTotal'])
}
}
Vue 在实例初始化时遍历 data 中的所有属性,并使用 Object.defineProperty 把这些属性全部转为 getter/setter。这样当追踪数据发生变化时,setter 会被自动调用。
但是这样做有以下问题:
Vue3 使用 Proxy 来监控数据的变化。Proxy 是 ES6 中提供的功能,其作用为:用于定义基本操作的自定义行为(如属性查找,赋值,枚举,函数调用等)。相对于Object.defineProperty(),其有以下特点:
在 Vue2 中, 0bject.defineProperty 会改变原始数据,而 Proxy 是创建对象的虚拟表示,并提供 set 、get 和 deleteProperty 等处理器,这些处理器可在访问或修改原始对象上的属性时进行拦截,有以下特点∶
Proxy 实现的响应式原理与 Vue2的实现原理相同,实现方式大同小异∶
在 Vue2 中,代码是 Options API 风格的,也就是通过填充 (option) data、methods、computed 等属性来完成一个 Vue 组件。这种风格使得 Vue 相对于 React极为容易上手,同时也造成了几个问题:
<template> <button @click="increment"> Count: {{ count }} </button> </template> <script> // Composition API 将组件属性暴露为函数,因此第一步是导入所需的函数 import { ref, computed, onMounted } from 'vue' export default { setup() { // 使用 ref 函数声明了称为 count 的响应属性,对应于Vue2中的data函数 const count = ref(0) // Vue2中需要在methods option中声明的函数,现在直接声明 function increment() { count.value++ } // 对应于Vue2中的mounted声明周期 onMounted(() => console.log('component mounted!')) return { count, increment } } } </script>
从React Hook的实现角度看,React Hook是根据useState调用的顺序来确定下一次重渲染时的state是来源于哪个useState,所以出现了以下限制
而Composition API是基于Vue的响应式系统实现的,与React Hook的相比
响应式系统自动实现了依赖收集,进而组件的部分的性能优化由Vue内部自己完成,而React Hook需要手动传入依赖,而且必须必须保证依赖的顺序,让useEffect、useMemo等函数正确的捕获依赖变量,否则会由于依赖不正确使得组件性能下降。
虚拟DOM(Virtual DOM)是一种编程概念,用于优化DOM操作的性能。具体来说,虚拟DOM是在内存中维护的一个虚拟的树形结构,它是对真实DOM的一个抽象和映射。当数据发生变化时,不是直接操作真实的DOM,而是先修改虚拟DOM,然后比较虚拟DOM和真实DOM的差异,最后只将差异部分应用到真实DOM上。这种方式可以大大减少DOM操作次数,从而提高页面渲染的性能。
虚拟DOM的解析过程:
看一下页面渲染的流程:解析HTML -> 生成DOM -> 生成 CSSOM -> Layout -> Paint -> Compiler
下面对比一下修改DOM时真实DOM操作和Virtual DOM的过程,来看一下它们重排重绘的性能消耗∶
Virtual DOM本质上是JavaScript的对象,它可以很方便的跨平台操作,比如服务端渲染、uniapp等
在新老虚拟DOM对比时:
在diff中,只对同层的子节点进行比较,放弃跨级的节点比较,使得时间复杂从O(n3)降低值O(n),也就是说,只有当新旧children都为多个子节点时才需要用核心的Diff算法进行同层级比较。
vue 中 key 值的作用可以分为两种情况来考虑:
使用index 作为 key和没写基本上没区别,因为不管数组的顺序怎么颠倒,index 都是 0, 1, 2…这样排列,导致 Vue 会复用错误的旧子节点,做很多额外的工作。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。