当前位置:   article > 正文

让机器学习助力医疗领域

机器学习在医疗领域的应用案例

文 / Yun Liu,研究科学家和 Po-Hsuan Cameron Cheng,研究工程师,Google Health

机器学习 (ML) 方法结合在医学领域并不新鲜,传统技术诸如决策树和逻辑回归等常用于推导既定的临床决策规则(如用于评估患者在冠心病预后风险的 TIMI 风险评分)。

近年来兴起一股在各种医疗应用中使用 ML 的浪潮(如从复杂的医疗记录中预测不良事件,以及提高基因组测序的准确性)。除了检测已知疾病外,ML 模型还可帮助梳理出过去未知的信号,如从视网膜眼底图像中检测出心血管疾病风险因素和屈光不正。

除了开发上述的这些模型外,了解如何将其运用到医疗工作流程中也很重要。先前的一些研究表明,在进行糖尿病眼部疾病分级

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/IT小白/article/detail/722492
推荐阅读
相关标签
  

闽ICP备14008679号