赞
踩
Flink 1.15.4
目前有很多工具都支持无代码实现Mysql -> Doris 的实时同步
不过好多要么不支持表结构变动,要不不支持多sink,我们的业务必须支持对表结构的实时级变动,因为会对表字段级别的修改,字段类型更改,字段名字更改删除添加等
所以要支持整库同步且又要表结构的实时变动就要自己写
flink-doris-connector-1.15-1.4.0.jar -- 实现一键万表同步
flink-sql-connector-mysql-cdc-2.4.0.jar --包含所有相关依赖,无需在导入debezium、cdc等等
1、脚本创建库表
2、同步表结构程序
3、Flink cdc 程序
对比第一版本:使用 Flink CDC 实现 MySQL 数据,表结构实时入 Apache Doris 效率有所提升
首次同步时keyby 后开窗聚合导致数据倾斜
聚合数据有字符串拼接改为JsonArray 避免聚合导致背压,字符串在数据量较大时拼接效率太低
- package com.zbkj.sync
-
- import com.alibaba.fastjson2.{JSON, JSONObject,JSONArray}
- import com.ververica.cdc.connectors.mysql.source.MySqlSource
- import com.ververica.cdc.connectors.mysql.table.StartupOptions
- import com.ververica.cdc.connectors.shaded.org.apache.kafka.connect.json.JsonConverterConfig
- import com.ververica.cdc.debezium.JsonDebeziumDeserializationSchema
- import com.zbkj.util.SinkBuilder.getKafkaSink
- import com.zbkj.util._
- import org.apache.flink.api.common.eventtime.WatermarkStrategy
- import org.apache.flink.api.common.restartstrategy.RestartStrategies
- import org.apache.flink.api.java.utils.ParameterTool
- import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows
- import org.apache.flink.streaming.api.{CheckpointingMode, TimeCharacteristic}
- import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
- import org.apache.flink.streaming.api.windowing.time.Time
- import org.apache.flink.streaming.api.scala._
-
- import java.util.Properties
-
- object FlinkSingleSync {
-
- PropertiesManager.initUtil()
- val props: PropertiesUtil = PropertiesManager.getUtil
-
- def main(args: Array[String]): Unit = {
- val env = StreamExecutionEnvironment.getExecutionEnvironment
- // 并行度
- env.setParallelism(props.parallelism)
- env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)
-
- val parameters: ParameterTool = ParameterTool.fromArgs(args)
- val memberID = parameters.getInt("memberID", 0)
- val source = parameters.get("source", "")
- val log = parameters.getBoolean("log", true)
- if (memberID == 0) {
- sys.exit(0)
- }
- val thisMember = "ttk_member_%d".format(memberID)
- val jobName = "Sync Member %d".format(memberID)
- val syncTopic = "sync_data_%d".format(memberID)
- println(syncTopic)
- val sourceFormat = SourceFormat.sourceFormat(source)
-
- env.setParallelism(4)
- /**
- * checkpoint的相关设置 */
- // 启用检查点,指定触发checkpoint的时间间隔(单位:毫秒,默认500毫秒),默认情况是不开启的
- env.enableCheckpointing(1000L, CheckpointingMode.EXACTLY_ONCE)
- // 设定Checkpoint超时时间,默认为10分钟
- env.getCheckpointConfig.setCheckpointTimeout(600000)
-
- /**
- * 设置检查点路径 */
- env.getCheckpointConfig.setCheckpointStorage("file:///data/flink-checkpoints/sync/%d".format(memberID))
-
- /** 设定两个Checkpoint之间的最小时间间隔,防止出现例如状态数据过大而导致Checkpoint执行时间过长,从而导致Checkpoint积压过多
- * 最终Flink应用密切触发Checkpoint操作,会占用了大量计算资源而影响到整个应用的性能(单位:毫秒) */
- env.getCheckpointConfig.setMinPauseBetweenCheckpoints(60000)
- // 默认情况下,只有一个检查点可以运行
- // 根据用户指定的数量可以同时触发多个Checkpoint,进而提升Checkpoint整体的效率
- //env.getCheckpointConfig.setMaxConcurrentCheckpoints(2)
- /** 外部检查点
- * 不会在任务正常停止的过程中清理掉检查点数据,而是会一直保存在外部系统介质中,另外也可以通过从外部检查点中对任务进行恢复 */
- env.getCheckpointConfig.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
-
-
- // env.getCheckpointConfig.setPreferCheckpointForRecovery(true)
- // 设置可以允许的checkpoint失败数
- env.getCheckpointConfig.setTolerableCheckpointFailureNumber(3)
- //设置可容忍的检查点失败数,默认值为0表示不允许容忍任何检查点失败
- env.getCheckpointConfig.setTolerableCheckpointFailureNumber(2)
- env.disableOperatorChaining()
-
- /**
- * 重启策略的配置
- * 重启3次,每次失败后等待10000毫秒
- */
- env.setRestartStrategy(RestartStrategies.fixedDelayRestart(3, 30000L))
-
- val dataBaseList = thisMember
- var tableList = thisMember + ".*"
- if (!log) {
- tableList = "lb_crm_customer_log|.*(?<!_log)$"
- }
-
- val dorisStreamLoad = new DorisStreamLoad2(props)
-
- // numeric 类型转换
- val customConverterConfigs = new java.util.HashMap[String, Object] {
- put(JsonConverterConfig.DECIMAL_FORMAT_CONFIG, "numeric")
- }
- /**
- * mysql source for doris */
- println(dataBaseList, tableList)
- val debeziumProps = new Properties()
- debeziumProps.setProperty("debezium.snapshot.mode","never")
- val mysqlSource = MySqlSource.builder[String]()
- .hostname(sourceFormat.getString("sourceHost"))
- .port(sourceFormat.getIntValue("sourcePort"))
- .databaseList(dataBaseList)
- //^((?!lb_admin_log|lb_bugs).)*$
- // lb_admin_log、lb_bugs为不需要同步表
- .tableList(props.regular_expression)
- .username(sourceFormat.getString("sourceUsername"))
- .password(sourceFormat.getString("sourcePassword"))
- .debeziumProperties(debeziumProps)
- // 全量读取
- .startupOptions(StartupOptions.initial())
- .includeSchemaChanges(true)
- // 发现新表,加入同步任务,需要在tableList中配置
- .scanNewlyAddedTableEnabled(true)
- .deserializer(new JsonDebeziumDeserializationSchema(false, customConverterConfigs)).build()
-
- val streamSource: DataStream[JSONObject] = env.fromSource(mysqlSource, WatermarkStrategy.noWatermarks(), "MySQL Source")
- .map(line => JSON.parseObject(line)).setParallelism(4)
-
- val DDLSqlStream: DataStream[JSONObject] = streamSource.filter(line => !line.containsKey("op")).uid("ddlSqlStream")
- val DMLStream: DataStream[JSONObject] = streamSource.filter(line => line.containsKey("op")).uid("dmlStream")
- /**
- * 首次全量同步时 时间窗口内几乎为一个表数据,此时下面操作会数据倾斜
- * 在binLogETLOne 中对表加随机数后缀 使其均匀分布
- * 聚合操作之后再将tableName转换为实际表
- */
- val DMLDataStream = FlinkCDCSyncETL.binLogETLOne(DMLStream)
- val keyByDMLDataStream:DataStream[(String, String, String, JSONArray)] = DMLDataStream.keyBy(keys => (keys._1, keys._2, keys._3))
- .timeWindow(Time.milliseconds(props.window_time_milliseconds))
- .reduce((itemFirst, itemSecond) => (itemFirst._1, itemFirst._2, itemFirst._3,combineJsonArray(itemFirst._4,itemSecond._4)))
- .map(line=>(line._1,line._2,line._3.split("-")(0),line._4))
- .name("分组聚合").uid("keyBy")
-
-
- keyByDMLDataStream.addSink(new SinkDoris(dorisStreamLoad)).name("数据写入Doris").uid("SinkDoris").setParallelism(4)
-
- val DDLKafkaSink=getKafkaSink("schema_change")
- DDLSqlStream.map(jsObj => jsObj.toJSONString()).sinkTo(DDLKafkaSink).name("同步DDL入Kafka").uid("SinkDDLKafka")
-
- val kafkaSink=getKafkaSink(syncTopic)
- keyByDMLDataStream.map(line=>(line._2,line._3,1)).filter(!_._2.endsWith("_sql"))
- .keyBy(keys => (keys._1, keys._2))
- .window(TumblingProcessingTimeWindows.of(Time.seconds(1))).sum(2)
- .map(line =>{
- val json = new JSONObject()
- json.put("member_id", line._1)
- json.put("table", line._2)
- json.toJSONString()
- }).sinkTo(kafkaSink).name("同步数据库表入Kafka").uid("syncDataTableToKafka")
-
- env.execute(jobName)
-
- }
-
- def combineJsonArray(jsr1:JSONArray,jsr2:JSONArray): JSONArray ={
- jsr1.addAll(jsr2)
- jsr1
- }
-
- }

- package com.zbkj.util
-
- import com.alibaba.fastjson2.{JSON, JSONArray, JSONObject}
- import org.apache.flink.api.scala.createTypeInformation
- import org.apache.flink.streaming.api.scala.DataStream
-
- import java.util.Random
-
- object FlinkCDCSyncETL {
-
- def binLogETLOne(dataStreamSource: DataStream[JSONObject]): DataStream[(String, String, String, JSONArray)] = {
- /**
- * 根据不同日志类型 匹配load doris方式
- */
- val tupleData: DataStream[(String, String, String, JSONArray)] = dataStreamSource.map(line => {
- var data: JSONObject = new JSONObject()
- var jsr: JSONArray = new JSONArray()
- var mergeType = "APPEND"
- val source = line.getJSONObject("source")
- val db = source.getString("db")
- val table = source.getString("table")
- val op=line.getString("op")
- if ("d" == op) {
- data = line.getJSONObject("before")
- mergeType = "DELETE"
- } else if ("u" == op) {
- data = line.getJSONObject("after")
- mergeType = "APPEND"
- } else if ("c" == op) {
- data = line.getJSONObject("after")
- } else if ("r" == op) {
- data = line.getJSONObject("after")
- mergeType = "APPEND"
- }
- jsr.add(data)
- Tuple4(mergeType, db, table+ "-" + new Random().nextInt(4), jsr)
- })
- tupleData
- }
-
-
-
- }

- package com.zbkj.util
-
- import org.apache.doris.flink.exception.StreamLoadException
- import org.apache.doris.flink.sink.HttpPutBuilder
- import org.apache.http.client.methods.CloseableHttpResponse
- import org.apache.http.entity.StringEntity
- import org.apache.http.impl.client.{DefaultRedirectStrategy, HttpClientBuilder, HttpClients}
- import org.apache.http.util.EntityUtils
- import org.slf4j.{Logger, LoggerFactory}
-
- import java.util.{Properties, UUID}
-
- class DorisStreamLoad2(props: PropertiesUtil) extends Serializable {
- private val logger: Logger = LoggerFactory.getLogger(classOf[DorisStreamLoad2])
-
- private lazy val httpClientBuilder: HttpClientBuilder = HttpClients.custom.setRedirectStrategy(new DefaultRedirectStrategy() {
- override protected def isRedirectable(method: String): Boolean = {
- // If the connection target is FE, you need to deal with 307 redirect。
- true
- }
- })
-
-
- def loadJson(jsonData: String, mergeType: String, db: String, table: String): Unit = try {
- val loadUrlPattern = "http://%s/api/%s/%s/_stream_load?"
- val entity = new StringEntity(jsonData, "UTF-8")
- val streamLoadProp = new Properties()
- streamLoadProp.setProperty("merge_type", mergeType)
- streamLoadProp.setProperty("format", "json")
- streamLoadProp.setProperty("column_separator", ",")
- streamLoadProp.setProperty("line_delimiter", ",")
- streamLoadProp.setProperty("strip_outer_array", "true")
- streamLoadProp.setProperty("exec_mem_limit", "6442450944")
- streamLoadProp.setProperty("strict_mode", "true")
- val httpClient = httpClientBuilder.build
- val loadUrlStr = String.format(loadUrlPattern, props.doris_load_host, db, table)
- try {
- val builder = new HttpPutBuilder()
- val label = UUID.randomUUID.toString
- builder.setUrl(loadUrlStr)
- .baseAuth(props.doris_user, props.doris_password)
- .addCommonHeader()
- .setLabel(label)
- .setEntity(entity)
- .addProperties(streamLoadProp)
- handlePreCommitResponse(httpClient.execute(builder.build()))
- }
-
- def handlePreCommitResponse(response: CloseableHttpResponse): Unit = {
- val statusCode: Int = response.getStatusLine.getStatusCode
- if (statusCode == 200 && response.getEntity != null) {
- val loadResult: String = EntityUtils.toString(response.getEntity)
- logger.info("load Result {}", loadResult)
- } else {
- throw new StreamLoadException("stream load error: " + response.getStatusLine.toString)
- }
-
-
- }
-
-
- }
- }

- package com.zbkj.util
-
- import com.alibaba.fastjson2.JSONArray
- import org.apache.flink.configuration.Configuration
- import org.apache.flink.streaming.api.functions.sink.RichSinkFunction
-
- class SinkDoris(dorisStreamLoad:DorisStreamLoad2) extends RichSinkFunction[(String, String, String, JSONArray)] {
-
-
- override def open(parameters: Configuration): Unit = {}
- /**
- * 每个元素的插入都要调用一次invoke()方法进行插入操作
- */
- override def invoke(value:(String, String, String, JSONArray)): Unit = {
- dorisStreamLoad.loadJson(value._4.toString,value._1,value._2,value._3)
- }
-
- override def close(): Unit = {}
- }

Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。