赞
踩
深度卷积对抗生成网络(Depp Convolutional Generative Adversarial Networks, DCGAN)是GAN的直接拓展。区别在于DCGAN使用卷积和反卷积。
实验使用动漫头像数据集,共有70,171张动漫头像图片,大小均为 96 × 96 96\times 96 96×96。
from download import download
url = "https://download.mindspore.cn/dataset/Faces/faces.zip"
path = download(url, "./faces", kind="zip", replace=True)
batch_size = 128 # 批量大小
image_size = 64 # 训练图像空间大小
nc = 3 # 图像彩色通道数
nz = 100 # 隐向量的长度
ngf = 64 # 特征图在生成器中的大小
ndf = 64 # 特征图在判别器中的大小
num_epochs = 3 # 训练周期数
lr = 0.0002 # 学习率
beta1 = 0.5 # Adam优化器的beta1超参数
import numpy as np import mindspore.dataset as ds import mindspore.dataset.vision as vision def create_dataset_imagenet(dataset_path): """数据加载""" dataset = ds.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True, decode=True) # 数据增强操作 transforms = [ vision.Resize(image_size), vision.CenterCrop(image_size), vision.HWC2CHW(), lambda x: ((x / 255).astype("float32")) ] # 数据映射操作 dataset = dataset.project('image') dataset = dataset.map(transforms, 'image') # 批量操作 dataset = dataset.batch(batch_size) return dataset dataset = create_dataset_imagenet('./faces')
import matplotlib.pyplot as plt
def plot_data(data):
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data[0][:30], 1):
plt.subplot(3, 10, i)
plt.axis("off")
plt.imshow(image.transpose(1, 2, 0))
plt.show()
sample_data = next(dataset.create_tuple_iterator(output_numpy=True))
plot_data(sample_data)
生成器
G
G
G是将隐向量
z
z
z映射到数据空间,由一系列Conv2dTranspose
、BatchNorm2d
和ReLU
构成,输出数据经过tanh
函数,使得返回
[
−
1
,
1
]
[-1,1]
[−1,1]范围的数据。
import mindspore as ms from mindspore import nn, ops from mindspore.common.initializer import Normal weight_init = Normal(mean=0, sigma=0.02) gamma_init = Normal(mean=1, sigma=0.02) class Generator(nn.Cell): """DCGAN网络生成器""" def __init__(self): super(Generator, self).__init__() self.generator = nn.SequentialCell( nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init), nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init), nn.ReLU(), nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init), nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init), nn.ReLU(), nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init), nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init), nn.ReLU(), nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init), nn.BatchNorm2d(ngf, gamma_init=gamma_init), nn.ReLU(), nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init), nn.Tanh() ) def construct(self, x): return self.generator(x) generator = Generator()
判别器
D
D
D是一个二分类网络,由Conv2d
、BatchNorm2d
和LeakyReLU
构成,最后通过Sigmoid
激活函数得到最终概率。
class Discriminator(nn.Cell): """DCGAN网络判别器""" def __init__(self): super(Discriminator, self).__init__() self.discriminator = nn.SequentialCell( nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init), nn.LeakyReLU(0.2), nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init), nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init), nn.LeakyReLU(0.2), nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init), nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init), nn.LeakyReLU(0.2), nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init), nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init), nn.LeakyReLU(0.2), nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init), ) self.adv_layer = nn.Sigmoid() def construct(self, x): out = self.discriminator(x) out = out.reshape(out.shape[0], -1) return self.adv_layer(out) discriminator = Discriminator()
使用二进制交叉熵损失函数BCELoss
和Adam
优化器:
# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')
# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')
def generator_forward(real_imgs, valid): # 将噪声采样为发生器的输入 z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1)) # 生成一批图像 gen_imgs = generator(z) # 损失衡量发生器绕过判别器的能力 g_loss = adversarial_loss(discriminator(gen_imgs), valid) return g_loss, gen_imgs def discriminator_forward(real_imgs, gen_imgs, valid, fake): # 衡量鉴别器从生成的样本中对真实样本进行分类的能力 real_loss = adversarial_loss(discriminator(real_imgs), valid) fake_loss = adversarial_loss(discriminator(gen_imgs), fake) d_loss = (real_loss + fake_loss) / 2 return d_loss grad_generator_fn = ms.value_and_grad(generator_forward, None, optimizer_G.parameters, has_aux=True) grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None, optimizer_D.parameters) @ms.jit def train_step(imgs): valid = ops.ones((imgs.shape[0], 1), mindspore.float32) fake = ops.zeros((imgs.shape[0], 1), mindspore.float32) (g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid) optimizer_G(g_grads) d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake) optimizer_D(d_grads) return g_loss, d_loss, gen_imgs import mindspore G_losses = [] D_losses = [] image_list = [] total = dataset.get_dataset_size() for epoch in range(num_epochs): generator.set_train() discriminator.set_train() # 为每轮训练读入数据 for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()): g_loss, d_loss, gen_imgs = train_step(imgs) if i % 100 == 0 or i == total - 1: # 输出训练记录 print('[%2d/%d][%3d/%d] Loss_D:%7.4f Loss_G:%7.4f' % ( epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy())) D_losses.append(d_loss.asnumpy()) G_losses.append(g_loss.asnumpy()) # 每个epoch结束后,使用生成器生成一组图片 generator.set_train(False) fixed_noise = ops.standard_normal((batch_size, nz, 1, 1)) img = generator(fixed_noise) image_list.append(img.transpose(0, 2, 3, 1).asnumpy()) # 保存网络模型参数为ckpt文件 mindspore.save_checkpoint(generator, "./generator.ckpt") mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")
这一节介绍了深度卷积生成对抗网络DCGAN,相对于经典的GAN网络来说,将生成器中的全连接层换成了反卷积层,而将判别器中的全连接层换成了卷积层,其训练过程和GAN网络基本一样。通过在70171张动漫头像上进行训练,使得该对抗网络能够生成动漫头像图片。
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。