赞
踩
之前的推文系统的介绍了使用netmeta
包实现对二分类变量、连续型变量和罕见事件的网状meta分析。今天的文章介绍如何使用netmeta
程序包实现生存数据的频率学网状meta分析,用来评估6种免疫疗法( Camrelizumab、Tislelzumab、Toripalimab、Sintilimab、Pembrolizumab、Nivolumab)联合化疗方案治疗一线晚期或转移性鳞状食管癌的NMA。
- library(netmeta)
- OS <- read_csv("netmeta.csv")
使用netmeta
函数构建NMA分析模型,其中TE = log(HR),seTE = (log(upperCI) - log(lowerCI))/3.92)
- m.netmeta <- netmeta(TE = TE, # TE = log(HR)
- seTE = seTE, # seTE = (log(upperCI) - log(lowerCI))/3.92)
- treat1 = treat1,
- treat2 = treat2,
- studlab = study,
- data = OS,
- sm = "HR",
- reference.group = "che",
- sep.trts = " vs ")
使用netgraph
函数绘制网络证据图
- netgraph(m.netmeta,
- points=T,
- plastic=F,
- col = "#5C8286",
- col.points = "#BFBFBF",
- bg.points = "#5C8286",
- number.of.studies = T,
- cex=1.5,
- cex.points=c(4,7,4,4,4,4,4))
使用forest
函数绘制森林图
- forest(m.netmeta,
- reference.group = "che",
- smlab = paste("IO-chem vs chemo"),
- drop.reference.group = TRUE,
- label.left = "HR",
- col.square = "#5C8286",
- drop = TRUE,
- sortvar = -TE,
- label.right = "95% CrI")
使用 netleague
函数计算两两比较结果
- netleague <- netleague(m.netmeta,
- bracket = "(",
- digits=2)
- # netleague
- write.csv(netleague$random, "netleague.csv")
使用netrank
函数计算累积概率并绘制条形排序图
netrank(m.netmeta, small.values = "good")
- P-score (common) P-score (random)
- tor_plus_che 0.8446 0.8446
- sin_plus_che 0.7316 0.7316
- tis_plus_che 0.6340 0.6340
- cam_plus_che 0.5010 0.5010
- pem_plus_che 0.3954 0.3954
- niv_plus_che 0.3917 0.3917
- che 0.0018 0.0018
参考文献
[1] Gao, Tian-Tian et al. “Comparative efficacy and safety of immunotherapy for patients with advanced or metastatic esophageal squamous cell carcinoma: a systematic review and network Meta-analysis.” BMC cancer vol. 22,1 992. 17 Sep. 2022, doi:10.1186/s12885-022-10086-5IF: 3.8 Q2.
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。