当前位置:   article > 正文

下面是对一篇博客的代码的改进,下面用到了lstm+attention进行文本分类_lstm后加attention

lstm后加attention
  1. #coding=utf-8
  2. import tensorflow as tf
  3. from tensorflow.contrib import learn
  4. import numpy as np
  5. from tensorflow.python.ops.rnn import static_rnn
  6. from tensorflow.python.ops.rnn_cell_impl import BasicLSTMCell
  7. # 数据
  8. positive_texts = [
  9. "我 今天 很 高兴",
  10. "我 很 开心",
  11. "他 很 高兴",
  12. "他 很 开心"
  13. ]
  14. negative_texts = [
  15. "我 不 高兴",
  16. "我 不 开心",
  17. "他 今天 不 高兴",
  18. "他 不 开心"
  19. ]
  20. label_name_dict = {
  21. 0: "正面情感",
  22. 1: "负面情感"
  23. }
  24. embedding_size = 50
  25. num_classes = 2
  26. # 将文本和label数值化
  27. all_texts = positive_texts + negative_texts
  28. labels = [0] * len(positive_texts) + [1] * len(negative_texts) #列表加法
  29. max_document_length = 4
  30. vocab_processor = learn.preprocessing.VocabularyProcessor(max_document_length)
  31. datas = np.array(list(vocab_processor.fit_transform(all_texts)))
  32. vocab_size = len(vocab_processor.vocabulary_)
  33. # 构造模型
  34. datas_placeholder = tf.placeholder(tf.int32, [None, max_document_length])
  35. labels_placeholder = tf.placeholder(tf.int32, [None])
  36. # 建立embeddings矩阵
  37. embeddings = tf.get_variable("embeddings", [vocab_size, embedding_size], initializer=tf.truncated_normal_initializer)
  38. # 将词索引号转换为词向量[None, max_document_length] => [None, max_document_length, embedding_size]
  39. embedded = tf.nn.embedding_lookup(embeddings, datas_placeholder)
  40. # 转换为LSTM的输入格式,要求是数组,数组的每个元素代表某个时间戳一个Batch的数据
  41. rnn_input = tf.unstack(embedded, max_document_length, axis=1)
  42. # 定义LSTM,20为输出神经元数量
  43. lstm_cell = BasicLSTMCell(20, forget_bias=1.0)
  44. rnn_outputs, rnn_states = static_rnn(lstm_cell, rnn_input, dtype=tf.float32)
  45. #lstm后使用attention
  46. # print(type(rnn_outputs[-1]),rnn_outputs)
  47. # rnn_outputs=attention(rnn_outputs[-1])
  48. alpha = tf.nn.softmax(rnn_outputs[-1])
  49. r = tf.multiply(rnn_outputs[-1], alpha) # [20,73,300]@[20,73,1]=[20,73,300]
  50. rnn_outputs = tf.tanh(r)
  51. #利用LSTM最后的输出进行预测,取最后一个时间戳的输出神经元,在其上加全连接层
  52. logits = tf.layers.dense(rnn_outputs, num_classes)
  53. predicted_labels = tf.argmax(logits, axis=1)
  54. # 定义损失和优化器
  55. losses= tf.nn.softmax_cross_entropy_with_logits(
  56. labels=tf.one_hot(labels_placeholder, num_classes),
  57. logits=logits
  58. )
  59. mean_loss = tf.reduce_mean(losses)
  60. optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(mean_loss)
  61. with tf.Session() as sess:
  62. # 初始化变量
  63. sess.run(tf.global_variables_initializer())
  64. # 定义要填充的数据
  65. feed_dict = {
  66. datas_placeholder: datas,
  67. labels_placeholder: labels
  68. }
  69. print("开始训练")
  70. for step in range(30):
  71. _, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=feed_dict)
  72. if step % 10 == 0:
  73. print("step = {}\tmean loss = {}".format(step, mean_loss_val))
  74. print("训练结束,进行预测")
  75. predicted_labels_val = sess.run(predicted_labels, feed_dict=feed_dict)
  76. for i, text in enumerate(all_texts):
  77. label = predicted_labels_val[i]
  78. label_name = label_name_dict[label]
  79. print(text, label)
  80. print("{} => {}".format(text, label_name))

代码改进于https://cloud.tencent.com/developer/article/1095265

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/AllinToyou/article/detail/715960
推荐阅读
相关标签
  

闽ICP备14008679号