当前位置:   article > 正文

基于传统方法的单目深度估计

传统单目深度估计算法python

如果想要深入学习单目深度估计方面的知识,可以关注我们工坊推出的课程:

单目深度估计方法:算法梳理与代码实现

单目深度估计一直以来都是计算机视觉领域中的一项非常具有挑战的难题。随着计算机技术、数字图像处理算法和深度学习等技术的发展,常用的单目深度估计算法大概可以分为以下几类:基于线索的和机器学习的传统方法、基于有监督的深度学习方法和基于无监督的深度学习方法。

今天和大家重点介绍一下三个传统方法的基本原理,包括:马尔科夫随机场(Markov random field, MRF)、运动恢复结构(Structure from motion, SFM)、阴影恢复形状(Shape from Shading)。

1、马尔可夫随机场

3d8025c8cd64ba97d4b34e33142e3814.png

在基于有监督学习的图像深度估计算法中,通常以图像中单个像素或者区域作为深度估计的基本单元,并且某一个像素或区域的深度与相邻像素或区域的深度存在关联。对这种上下文相关的约束关系, 一般使用马尔可夫随机场(Markov random field, MRF) 或条件随机场(conditional random field, CRF)来建模,描述一个像素或区域的深度与其相邻像素或区域深度间的关系。

声明:本文内容由网友自发贡献,不代表【wpsshop博客】立场,版权归原作者所有,本站不承担相应法律责任。如您发现有侵权的内容,请联系我们。转载请注明出处:https://www.wpsshop.cn/w/2023面试高手/article/detail/713497
推荐阅读
相关标签
  

闽ICP备14008679号