赞
踩
智谱AI(Zhipu AI)是一家致力于人工智能技术研发和应用的公司。该公司由清华大学背景的团队创立,专注于大模型技术的研究与推广。智谱AI在人工智能领域取得了显著成就,其发布的自研大模型GLM-4等产品。
进入官网(https://maas.aminer.cn/),注册账号实名后,将会赠送有效期一个月的体验包。
注意:我们常见的API_KEY和API_SECRET,这里采用了统一为API key,使用 .这个符号进行划分。
举个栗子:yingzix688.xxxx。
那么,API_KEY:yingzix688
API_SECRET:xxxx
大家只需要看自己的API key进行分割出来即可。
官方github地址:https://github.com/zhipuai/zhipuai-sdk-java-v4
- <dependency>
- <groupId>cn.bigmodel.openapi</groupId>
- <artifactId>oapi-java-sdk</artifactId>
- <version>release-V4-2.0.0</version>
- </dependency>
- package com.zhipu.oapi.demo;
-
- import com.alibaba.fastjson.JSON;
- import com.fasterxml.jackson.annotation.JsonInclude;
- import com.fasterxml.jackson.core.JsonProcessingException;
- import com.fasterxml.jackson.core.type.TypeReference;
- import com.fasterxml.jackson.databind.DeserializationFeature;
- import com.fasterxml.jackson.databind.ObjectMapper;
- import com.fasterxml.jackson.databind.PropertyNamingStrategy;
- import com.zhipu.oapi.ClientV4;
- import com.zhipu.oapi.Constants;
- import com.zhipu.oapi.service.v4.embedding.EmbeddingApiResponse;
- import com.zhipu.oapi.service.v4.embedding.EmbeddingRequest;
- import com.zhipu.oapi.service.v4.file.FileApiResponse;
- import com.zhipu.oapi.service.v4.file.QueryFileApiResponse;
- import com.zhipu.oapi.service.v4.file.QueryFilesRequest;
- import com.zhipu.oapi.service.v4.fine_turning.*;
- import com.zhipu.oapi.service.v4.image.CreateImageRequest;
- import com.zhipu.oapi.service.v4.image.ImageApiResponse;
- import com.zhipu.oapi.service.v4.model.*;
- import io.reactivex.Flowable;
-
- import java.util.ArrayList;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.concurrent.atomic.AtomicBoolean;
-
-
- public class V4OkHttpClientTest {
-
- private static final String API_KEY = "";
-
- private static final String API_SECRET = "";
-
- private static final ClientV4 client = new ClientV4.Builder(API_KEY,API_SECRET).build();
-
- private static final ObjectMapper mapper = defaultObjectMapper();
-
-
- public static ObjectMapper defaultObjectMapper() {
- ObjectMapper mapper = new ObjectMapper();
- mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
- mapper.setSerializationInclusion(JsonInclude.Include.NON_NULL);
- mapper.setPropertyNamingStrategy(PropertyNamingStrategy.SNAKE_CASE);
- mapper.addMixIn(ChatFunction.class, ChatFunctionMixIn.class);
- mapper.addMixIn(ChatCompletionRequest.class, ChatCompletionRequestMixIn.class);
- mapper.addMixIn(ChatFunctionCall.class, ChatFunctionCallMixIn.class);
- return mapper;
- }
-
- // 请自定义自己的业务id
- private static final String requestIdTemplate = "mycompany-%d";
-
- public static void main(String[] args) throws Exception {
- System.setProperty("org.slf4j.simpleLogger.logFile", "System.out");
- // 1. sse-invoke调用模型,使用标准Listener,直接返回结果
- testSseInvoke();
-
- // 2. invoke调用模型,直接返回结果
- // testInvoke();
-
- // 3. 异步调用
- // String taskId = testAsyncInvoke();
- // 4.异步查询
- // testQueryResult(taskId);
-
- // 5.文生图
- // testCreateImage();
-
- // 6. 图生文
- // testImageToWord();
-
- // 7. 向量模型
- // testEmbeddings();
-
- // 8.微调-上传微调数据集
- // testUploadFile();
-
- // 9.微调-查询上传文件列表
- // testQueryUploadFileList();
-
- // 10.微调-创建微调任务
- // testCreateFineTuningJob();
-
- // 11.微调-查询微调任务事件
- // testQueryFineTuningJobsEvents();
-
- // 12.微调-查询微调任务
- // testRetrieveFineTuningJobs();
-
- // 13.微调-查询个人微调任务
- // testQueryPersonalFineTuningJobs();
-
- // 14.微调-调用微调模型(参考模型调用接口,并替换成要调用模型的编码model)
- }
-
- private static void testQueryPersonalFineTuningJobs() {
- QueryPersonalFineTuningJobRequest queryPersonalFineTuningJobRequest = new QueryPersonalFineTuningJobRequest();
- queryPersonalFineTuningJobRequest.setLimit(1);
- QueryPersonalFineTuningJobApiResponse queryPersonalFineTuningJobApiResponse = client.queryPersonalFineTuningJobs(queryPersonalFineTuningJobRequest);
- System.out.println("model output:" + JSON.toJSONString(queryPersonalFineTuningJobApiResponse));
-
- }
-
- private static void testQueryFineTuningJobsEvents() {
- QueryFineTuningJobRequest queryFineTuningJobRequest = new QueryFineTuningJobRequest();
- queryFineTuningJobRequest.setJobId("ftjob-20240119114544390-zkgjb");
- // queryFineTuningJobRequest.setLimit(1);
- // queryFineTuningJobRequest.setAfter("1");
- QueryFineTuningEventApiResponse queryFineTuningEventApiResponse = client.queryFineTuningJobsEvents(queryFineTuningJobRequest);
- System.out.println("model output:" + JSON.toJSONString(queryFineTuningEventApiResponse));
- }
-
- /**
- * 查询微调任务
- */
- private static void testRetrieveFineTuningJobs() {
- QueryFineTuningJobRequest queryFineTuningJobRequest = new QueryFineTuningJobRequest();
- queryFineTuningJobRequest.setJobId("ftjob-20240119114544390-zkgjb");
- // queryFineTuningJobRequest.setLimit(1);
- // queryFineTuningJobRequest.setAfter("1");
- QueryFineTuningJobApiResponse queryFineTuningJobApiResponse = client.retrieveFineTuningJobs(queryFineTuningJobRequest);
- System.out.println("model output:" + JSON.toJSONString(queryFineTuningJobApiResponse));
- }
-
- /**
- * 创建微调任务
- */
- private static void testCreateFineTuningJob() {
- FineTuningJobRequest request = new FineTuningJobRequest();
- String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
- request.setRequestId(requestId);
- request.setModel("chatglm3-6b");
- request.setTraining_file("file-20240118082608327-kp8qr");
- CreateFineTuningJobApiResponse createFineTuningJobApiResponse = client.createFineTuningJob(request);
- System.out.println("model output:" + JSON.toJSONString(createFineTuningJobApiResponse));
- }
-
- /**
- * 微调文件上传列表查询
- */
- private static void testQueryUploadFileList() {
- QueryFilesRequest queryFilesRequest = new QueryFilesRequest();
- QueryFileApiResponse queryFileApiResponse = client.queryFilesApi(queryFilesRequest);
- System.out.println("model output:" + JSON.toJSONString(queryFileApiResponse));
- }
-
-
- /**
- * 微调上传数据集
- */
- private static void testUploadFile() {
- String filePath = "/Users/wujianguo/Downloads/transaction-data.jsonl";
- String purpose = "fine-tune";
- FileApiResponse fileApiResponse = client.invokeUploadFileApi(purpose, filePath);
- System.out.println("model output:" + JSON.toJSONString(fileApiResponse));
- }
-
- private static void testEmbeddings() {
- EmbeddingRequest embeddingRequest = new EmbeddingRequest();
- embeddingRequest.setInput("hello world");
- embeddingRequest.setModel(Constants.ModelEmbedding2);
- EmbeddingApiResponse apiResponse = client.invokeEmbeddingsApi(embeddingRequest);
- System.out.println("model output:" + JSON.toJSONString(apiResponse));
- }
-
- /**
- * 图生文
- */
- private static void testImageToWord() {
- List<ChatMessage> messages = new ArrayList<>();
- List<Map<String, Object>> contentList = new ArrayList<>();
- Map<String, Object> textMap = new HashMap<>();
- textMap.put("type", "text");
- textMap.put("text", "图里有什么");
- Map<String, Object> typeMap = new HashMap<>();
- typeMap.put("type", "image_url");
- Map<String, Object> urlMap = new HashMap<>();
- urlMap.put("url", "https://cdn.bigmodel.cn/enterpriseAc/3f328152-e15c-420c-803d-6684a9f551df.jpeg?attname=24.jpeg");
- typeMap.put("image_url", urlMap);
- contentList.add(textMap);
- contentList.add(typeMap);
- ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), contentList);
- messages.add(chatMessage);
- String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
-
-
- ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
- .model(Constants.ModelChatGLM4V)
- .stream(Boolean.FALSE)
- .invokeMethod(Constants.invokeMethod)
- .messages(messages)
- .requestId(requestId)
- .build();
- ModelApiResponse modelApiResponse = client.invokeModelApi(chatCompletionRequest);
- System.out.println("model output:" + JSON.toJSONString(modelApiResponse));
-
- }
-
- private static void testCreateImage() {
- CreateImageRequest createImageRequest = new CreateImageRequest();
- createImageRequest.setModel(Constants.ModelCogView);
- // createImageRequest.setPrompt("画一个温顺可爱的小狗");
- ImageApiResponse imageApiResponse = client.createImage(createImageRequest);
- System.out.println("imageApiResponse:" + JSON.toJSONString(imageApiResponse));
- }
-
-
- /**
- * sse调用
- */
- private static void testSseInvoke() {
- List<ChatMessage> messages = new ArrayList<>();
- ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "ChatGLM和你哪个更强大");
- // ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "你能帮我查询2024年1月1日从北京南站到上海的火车票吗?");
- messages.add(chatMessage);
- String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
- // 函数调用参数构建部分
- List<ChatTool> chatToolList = new ArrayList<>();
- ChatTool chatTool = new ChatTool();
- chatTool.setType(ChatToolType.FUNCTION.value());
- ChatFunctionParameters chatFunctionParameters = new ChatFunctionParameters();
- chatFunctionParameters.setType("object");
- Map<String, Object> properties = new HashMap<>();
- properties.put("departure", new HashMap<String, Object>() {{
- put("type", "string");
- put("description", "出发城市或车站");
- }});
- properties.put("destination", new HashMap<String, Object>() {{
- put("type", "string");
- put("description", "目的地城市或车站");
- }});
- properties.put("date", new HashMap<String, Object>() {{
- put("type", "string");
- put("description", "要查询的车次日期");
- }});
- List<String> required = new ArrayList<>();
- required.add("departure");
- required.add("destination");
- required.add("date");
- chatFunctionParameters.setProperties(properties);
- ChatFunction chatFunction = ChatFunction.builder()
- .name("query_train_info")
- .description("根据用户提供的信息,查询对应的车次")
- .parameters(chatFunctionParameters)
- .required(required)
- .build();
- chatTool.setFunction(chatFunction);
- chatToolList.add(chatTool);
-
- ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
- .model(Constants.ModelChatGLM4)
- .stream(Boolean.TRUE)
- .messages(messages)
- .requestId(requestId)
- .tools(chatToolList)
- .toolChoice("auto")
- .build();
- ModelApiResponse sseModelApiResp = client.invokeModelApi(chatCompletionRequest);
- if (sseModelApiResp.isSuccess()) {
- AtomicBoolean isFirst = new AtomicBoolean(true);
- ChatMessageAccumulator chatMessageAccumulator = mapStreamToAccumulator(sseModelApiResp.getFlowable())
- .doOnNext(accumulator -> {
- {
- if (isFirst.getAndSet(false)) {
- System.out.print("Response: ");
- }
- if (accumulator.getDelta() != null && accumulator.getDelta().getTool_calls() != null) {
- String jsonString = mapper.writeValueAsString(accumulator.getDelta().getTool_calls());
- System.out.println("tool_calls: " + jsonString);
- }
- if (accumulator.getDelta() != null && accumulator.getDelta().getContent() != null) {
- System.out.print(accumulator.getDelta().getContent());
- }
- }
- })
- .doOnComplete(System.out::println)
- .lastElement()
- .blockingGet();
-
- Choice choice = new Choice(chatMessageAccumulator.getChoice().getFinishReason(), 0L, chatMessageAccumulator.getDelta());
- List<Choice> choices = new ArrayList<>();
- choices.add(choice);
- ModelData data = new ModelData();
- data.setChoices(choices);
- data.setUsage(chatMessageAccumulator.getUsage());
- data.setId(chatMessageAccumulator.getId());
- data.setCreated(chatMessageAccumulator.getCreated());
- data.setRequestId(chatCompletionRequest.getRequestId());
- sseModelApiResp.setFlowable(null);
- sseModelApiResp.setData(data);
- }
- System.out.println("model output:" + JSON.toJSONString(sseModelApiResp));
- }
-
- public static Flowable<ChatMessageAccumulator> mapStreamToAccumulator(Flowable<ModelData> flowable) {
- return flowable.map(chunk -> {
- return new ChatMessageAccumulator(chunk.getChoices().get(0).getDelta(), null, chunk.getChoices().get(0), chunk.getUsage(), chunk.getCreated(), chunk.getId());
- });
- }
-
- /**
- * 同步调用
- */
- private static void testInvoke() {
- List<ChatMessage> messages = new ArrayList<>();
- ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "ChatGLM和你哪个更强大");
- messages.add(chatMessage);
- String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
- // 函数调用参数构建部分
- List<ChatTool> chatToolList = new ArrayList<>();
- ChatTool chatTool = new ChatTool();
- chatTool.setType(ChatToolType.FUNCTION.value());
- ChatFunctionParameters chatFunctionParameters = new ChatFunctionParameters();
- chatFunctionParameters.setType("object");
- Map<String, Object> properties = new HashMap<>();
- properties.put("location", new HashMap<String, Object>() {{
- put("type", "string");
- put("description", "城市,如:北京");
- }});
- properties.put("unit", new HashMap<String, Object>() {{
- put("type", "string");
- put("enum", new ArrayList<String>() {{
- add("celsius");
- add("fahrenheit");
- }});
- }});
- chatFunctionParameters.setProperties(properties);
- ChatFunction chatFunction = ChatFunction.builder()
- .name("get_weather")
- .description("Get the current weather of a location")
- .parameters(chatFunctionParameters)
- .build();
- chatTool.setFunction(chatFunction);
- chatToolList.add(chatTool);
- ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
- .model(Constants.ModelChatGLM4)
- .stream(Boolean.FALSE)
- .invokeMethod(Constants.invokeMethod)
- .messages(messages)
- .requestId(requestId)
- .tools(chatToolList)
- .toolChoice("auto")
- .build();
- ModelApiResponse invokeModelApiResp = client.invokeModelApi(chatCompletionRequest);
- try {
- System.out.println("model output:" + mapper.writeValueAsString(invokeModelApiResp));
- } catch (JsonProcessingException e) {
- e.printStackTrace();
- }
- }
-
-
- /**
- * 异步调用
- */
- private static String testAsyncInvoke() {
- List<ChatMessage> messages = new ArrayList<>();
- ChatMessage chatMessage = new ChatMessage(ChatMessageRole.USER.value(), "ChatLM和你哪个更强大");
- messages.add(chatMessage);
- String requestId = String.format(requestIdTemplate, System.currentTimeMillis());
- // 函数调用参数构建部分
- List<ChatTool> chatToolList = new ArrayList<>();
- ChatTool chatTool = new ChatTool();
- chatTool.setType(ChatToolType.FUNCTION.value());
- ChatFunctionParameters chatFunctionParameters = new ChatFunctionParameters();
- chatFunctionParameters.setType("object");
- Map<String, Object> properties = new HashMap<>();
- properties.put("location", new HashMap<String, Object>() {{
- put("type", "string");
- put("description", "城市,如:北京");
- }});
- properties.put("unit", new HashMap<String, Object>() {{
- put("type", "string");
- put("enum", new ArrayList<String>() {{
- add("celsius");
- add("fahrenheit");
- }});
- }});
- chatFunctionParameters.setProperties(properties);
- ChatFunction chatFunction = ChatFunction.builder()
- .name("get_weather")
- .description("Get the current weather of a location")
- .parameters(chatFunctionParameters)
- .build();
- chatTool.setFunction(chatFunction);
- chatToolList.add(chatTool);
- ChatCompletionRequest chatCompletionRequest = ChatCompletionRequest.builder()
- .model(Constants.ModelChatGLM4)
- .stream(Boolean.FALSE)
- .invokeMethod(Constants.invokeMethodAsync)
- .messages(messages)
- .requestId(requestId)
- .tools(chatToolList)
- .toolChoice("auto")
- .build();
- ModelApiResponse invokeModelApiResp = client.invokeModelApi(chatCompletionRequest);
- System.out.println("model output:" + JSON.toJSONString(invokeModelApiResp));
- return invokeModelApiResp.getData().getTaskId();
- }
-
-
- /**
- * 查询异步结果
- *
- * @param taskId
- */
- private static void testQueryResult(String taskId) {
- QueryModelResultRequest request = new QueryModelResultRequest();
- request.setTaskId(taskId);
- QueryModelResultResponse queryResultResp = client.queryModelResult(request);
- try {
- System.out.println("model output:" + mapper.writeValueAsString(queryResultResp));
- } catch (JsonProcessingException e) {
- e.printStackTrace();
- }
- }
- }

这里解释一下四个的区别
testSseInvoke 使用的是逐渐输出,AI回答的结果是一段一段的展示。
testInvoke 使用的是同步执行,当AI全部的回答都输出后才会展示出来。
testAsyncInvoke 与testQueryResult 搭配使用,先通过testAsyncInvoke 让AI去执行,直接返回一个成功或者失败,之后通过获得的taskId,再用testQueryResult去查询获得结果即可。这个过程实践过Bi项目的小伙伴应该深有体会。
这里补充下,如果你要修改问题,只需要修改content参数中的值即可。相当于问AI问题。
其实最关键的就是前三个
你要选择哪个模型, 例如选择GLM-4 还是GLM-3-Turbo
这里需要考虑两个值,一个是role,一般为user即可。role的值官方已经给我们枚举了,只需要调用即可。
剩下的则是我们需要自己填入的content
这个是区分我们每次上传的任务,保证唯一性,可以自己上传一个类似于雪花算法的ID,用户端不传的话平台也会自动生成。
其他参数目前影子测试完前五个方法后发现使用官方默认的即可。只需要你调整好代码的位置以及content的值即可。
剩下的参数,如果你需要使用微调或者向量知识库等高阶玩法,则根据官方文档调整即可。很多地方已经自带了枚举值,只需要直接选择填充。
最后,大家可以用这一个月的免费额度,打造一个自己的AI小工具使用,更多玩法,由大家一起探索。
我是程序员影子,一名以Java为主,其余时间探索AI+编程的程序猿。
以上就是本次分享的所有内容,感兴趣的朋友点个关注呀,感谢大家啦~
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。