赞
踩
不管你使用Pytorch还是TensorFlow,都能在Hugging Face提供的资源中自如切换。
Hugging Face – On a mission to solve NLP, one commit at a time.
你可以在这里下载所需要的模型,也可以上传你微调之后用于特定task的模型。
https://huggingface.co/transformers/master/index.html
如果你想快速的判断一下输入序列的情感极性,那么就:
- from transformers import pipeline
- classifier = pipeline('sentiment-analysis') # 在pipline()中可以指定很多task
- print(classifier('what are you doing?'))
如果没有指定使用的模型,那么会默认下载模型:“distilbert-base-uncased-finetuned-sst-2-english”,下载的位置在系统用户文件夹的“.cache\torch\transformers”目录。
————————————————————————————
如果想选择自己想要的模型,那么就:
- from transformers import pipeline
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
- # AutoTokenizer用于tokenize,可以通俗理解为分词
- # AutoModelForSequenceClassification将用于下载模型
-
- model_name = "nlptown/bert-base-multilingual-uncased-sentiment" # 选择想要的模型
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
- print(classifier('what are you doing?'))
请确保这个模型存在于:https://huggingface.co/models
————————————————————————————
如果你想指定模型的下载位置,那么就在代码最前面输入:
import os
os.environ['TRANSFORMERS_CACHE'] = ‘地址’
即:
- import os
- os.environ['TRANSFORMERS_CACHE'] = ‘地址’
-
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
- # AutoTokenizer用于tokenize,可以通俗理解为分词
- # AutoModelForSequenceClassification将用于下载模型
-
- model_name = "nlptown/bert-base-multilingual-uncased-sentiment" # 选择想要的模型
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
- print(classifier('what are you doing?'))
————————————————————————————
当然,也可以先把模型下载下来,再从本地读取
- from transformers import pipeline
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
-
- model_name = "./nlptown/bert-base-multilingual-uncased-sentiment" # 这里是文件路径(文件夹)
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
- tokenizer = AutoTokenizer.from_pretrained(model_name)
- classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
- print(classifier('what are you doing?'))
Copyright © 2003-2013 www.wpsshop.cn 版权所有,并保留所有权利。